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Abstract

unsuccessful.

Antioxidants, Neuroprotective therapies

Mitochondrial dysfunction is strongly implicated in the etiology of idiopathic and genetic Parkinson’s disease (PD).
However, strategies aimed at ameliorating mitochondrial dysfunction, including antioxidants, antidiabetic drugs,

and iron chelators, have failed in disease-modification clinical trials. In this review, we summarize the cellular determi-
nants of mitochondrial dysfunction, including impairment of electron transport chain complex 1, increased oxida-
tive stress, disturbed mitochondrial quality control mechanisms, and cellular bioenergetic deficiency. In addition,

we outline mitochondrial pathways to neurodegeneration in the current context of PD pathogenesis, and review
past and current treatment strategies in an attempt to better understand why translational efforts thus far have been
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Background

Parkinson’s disease (PD) is the most prevalent neu-
rodegenerative movement disorder affecting up to 2
% of those aged 60years and older [1]. Clinically, PD is
defined by presence of the levodopa-responsive motor
symptoms bradykinesia with resting tremor or rigidity
[2]. These motor symptoms are frequently accompanied
by non-motor symptoms, including but not limited to
sleep disturbances, depression, autonomic dysfunction,
and hyposmia [3, 4]. Today, there are still no proven
strategies for slowing the progression of PD. This unmet
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medical need reflects our incomplete grasp of disease
mechanisms.

Neuropathologically, PD is characterized by two imper-
fectly aligned features: selective neuronal degeneration of
vulnerable cell-types within particular brain regions (e.g.,
midbrain dopaminergic (DA) substantia nigra pars com-
pacta (SNc) neurons [5, 6]), and the presence of eosino-
philic alpha-synuclein (aSYN) positive inclusion bodies,
termed Lewy pathology (LP). Systematic cross-sectional
characterization of human postmortem PD brains
revealed that even in late-stage disease LP is not globally
distributed in the brain of PD patients, but is restricted
to certain vulnerable nuclei, thereby showing a patch-
like distribution [7, 8]. While there is clear evidence that
some regions (SNc, olfactory bulb, dorsal motor nucleus
of vagus, locus coeruleus, pedunculopontine nucleus,
amygdala) are more susceptible to LP than others, it has
been difficult to establish the sequence and extent in
which they develop LP. In addition to brain pathology,
LP also affects many structures of the peripheral nervous
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system (nerve fibers within e.g., skin, heart, esophagus)
[7, 9]. The observation that misfolded, fibrillar forms
of aSYN can propagate from one cell to another in PD
animal models [10], has fueled the thought that also in
humans toxic aSYN species might spread between synap-
tically coupled brain regions, thereby driving the devel-
opment of brain-wide LP formation [11].

In contrast to the relatively well-mapped distribution of
LP, the spatio-temporal development of cell-loss within
affected regions remains largely elusive. While loss of
dopaminergic SNc neurons has been well-documented
and clearly linked to the onset of PD motor symptoma-
tology, there is no brain-wide assessment of neurodegen-
eration, and the available studies investigating cell loss
show notable heterogeneity [12]. Given the absence of a
clear correlation between LP formation and neuronal cell
loss, it is crucial to disentangle the cell-intrinsic factors
which render neurons susceptible to LP formation and
those who drive neurodegeneration. So far, several core
pathogenetic factors have been identified. Among those
are impaired cellular protein homeostasis, dysfunctional
proteasomal and lysosomal clearance systems, impaired
protein and membrane trafficking, synaptic dysfunction
including disturbed neurotransmission, neuroinflamma-
tion, and mitochondrial dysfunction [3, 13-16].

Mitochondrial dysfunction has long been implicated
as a key pathological hallmark in PD. Since mitochondria
are highly multifunctional organelles, their integrity is
essential for neuronal function and survival. This review
summarizes the evidence for mitochondrial dysfunction
in genetic and idiopathic PD, discusses the bidirectional
interaction between mitochondrial stress and aSYN
aggregation, and points out potential mitochondrial
pathways to neurodegeneration in the current context
of PD pathogenesis. Further, we review current and past
therapeutic strategies targeting mitochondrial dysfunc-
tion in an attempt to modify disease progression, and
outline current gaps in our understanding.

Main text

Importance of mitochondrial health in PD at-risk neurons
Neurons possess a complex network of mitochondria
stretching from dendrites that receive synaptic contacts
to the synaptic terminals that communicate with neigh-
boring neurons. Mitochondria perform a variety of tasks,
including generation of adenosine triphosphate (ATP),
Ca”*" buffering and epigenetic signaling [17-19]. Two
central tenets of the mitochondrial theory of pathogen-
esis are that neurons have a high bioenergetic demand
and that neurons rely heavily on mitochondria for ATP
production. Indeed, all cells rely upon ATP to drive basic
cellular processes. Neurons differ from many other cell
types in ways that increase their bioenergetic needs. In
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particular, they need ATP to maintain ionic homeostasis
which is being constantly challenged by 1) their reliance
upon electrical signals generated by transmembrane ion
fluxes, 2) their sequestration of transmitter into vesi-
cles, fusion of these vesicles during synaptic activity and
reuptake of membrane during vesicular recycling, and 3)
the need to maintain and repair an often massive trans-
mitter release machinery [20]. The ATP necessary for
these processes can be derived both from glycolysis and
mitochondrial oxidative phosphorylation (OXPHOS).
While glycolytic mechanisms are fast, they are rela-
tively inefficient and generate roughly one tenth the ATP
from glucose that mitochondria can extract. It has been
hypothesized that neurons rely exclusively upon mito-
chondrial OXPHOS for ATP generation (using lactate
shuttled from astrocytes), but more recent direct meas-
urements have shown that neurons use both glycolysis
and OXPHOS to generate ATP [21].

Despite the clear importance of mitochondria to neu-
ronal bioenergetics, they also play a variety of other roles.
One of these is Ca®" buffering. This may be particu-
larly important in axons of some neurons [22]. Another
important function is metabolic signaling [19]. For exam-
ple, mitochondria are critical sources of citrate, which is
important to the production of acetyl-coenzyme A and
acetylation of proteins and DNA.

Compromised mitochondrial function may have a dis-
proportionate impact on those neurons that are at-risk
in PD. The best studied example of this phenotype is the
SNc dopaminergic neuron. These neurons are constantly
active and have extensive axonal arbors with as many as
1-2 million transmitter release sites per axon in humans
[23]. Many (if not all) of the other neurons at greatest risk
in PD have a similar phenotype: locus coeruleus noradr-
energic neurons, dorsal motor nucleus of the vagus
cholinergic neurons, and pedunculopontine nucleus cho-
linergic neurons [20, 24—26]. These neurons play a key
role in organismal survival, particularly during times of
crisis when sustained, efficient function is critical.

To meet this bioenergetic demand, many at-risk neu-
rons engage a feed-forward control mechanism that uti-
lizes plasma membrane L-type Ca®" channels to drive
mitochondrial OXPHOS [27-32]. While this feed-for-
ward control helps to ensure that ATP levels do not fall
during times of high demand, it also increases the pro-
duction of damaging reactive oxygen species (ROS) and
basal mitochondrial oxidant stress. ROS and mitochon-
drial oxidant stress damages lipids, proteins and DNA
[33]. This can not only compromise cellular function but
leads to an increased demand on catabolic processes in
neurons, most importantly lysosomal degradation. This
increased demand should in principle decrease spare
capacity, providing a linkage between mitochondrial
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stress and genetic mutations linked to familial cases of
PD involving mitochondrial quality control (DJ1, PINKI1,
parkin) and lysosomal function (GBA1, LRRK2, VPS35,
others).

Evidence for mitochondrial impairment in PD patients

A key piece of evidence that mitochondrial dysfunc-
tion is implicated in PD pathogenesis stems from the
observation in 1983 that several recreational drug users
which intravenously administered the new synthetic
heroin drug MPPP (1-methyl-4-phenyl-4-propion-
oxy-piperidine) developed acute-onset but levodopa
(L-DOPA) responsive parkinsonian motor symptoms
shortly after drug administration [34]. Subsequently,
the mitochondrial ETC inhibitor MPTP (1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine) was identified as a
byproduct of poor MPPP synthesis. Following absorp-
tion, MPTP crosses the blood-brain barrier and is con-
verted to MPP* within astroglia by monoaminoxidase B
(Fig. 1). Extracellularly released MPP™ is then actively
taken up via the DA transporter and accumulates
within mitochondria of DA neurons where it inhib-
its mitochondrial complex I (CI) of the ETC [35-37].
Since its first discovery, MPTP induced toxicity has
been established and validated many times as a reliable
approach to model neurodegeneration and develop-
ment of motor symptoms in rodents and primates [38,
39]. From a translational standpoint, the MPTP studies
have taught us that mitochondrial CI inhibition in DA
SNc neurons can cause a disease phenotype that resem-
bles many features of idiopathic PD, e.g. all cardinal
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motor symptoms (bradykinesia, rigidity, tremor), some
non-motor symptoms (dribbling of saliva, urinary dis-
turbances), and L-DOPA responsiveness.

The observation that CI blockade can induce PD-like
symptoms is further substantiated by the finding that the
chemically related substance paraquat, as well as the CI
inhibitor rotenone (Fig. 1), are not only shown by epide-
miology to be risk factors for the development of PD, but
also induce PD-like symptomatology in animal experi-
ments [40—42]. More recently, genetic approaches have
shown that disruption of CI function specifically in dopa-
minergic neurons is sufficient to produce a progressive,
L-DOPA-responsive parkinsonism [43].

But is mitochondrial dysfunction also a constant and
reliable feature of idiopathic PD, meaning in the absence
of mitochondrial toxins or genetic disease drivers?
Important aspects can be derived from the analyses of
brain tissue from deceased idiopathic PD patients. In sev-
eral studies, tissue samples of the SNc but also of other
brain regions, as well as lymphocytes and platelets were
analyzed for the presence of ETC alterations by immu-
noblotting, immunohistochemistry, or enzyme activity
analysis. The most pronounced and consistently reported
finding is a decreased activity of CI of the ETC in SNc
tissue homogenates [44—47]. Some studies even observed
a decreased activity of CI in tissue samples from the
frontal as well as prefrontal cortices and striatum, but
not peripheral tissues [48-50]. In contrast, deficiency of
ETC ClII, CIII or CIV was only sporadically observed,
and when ETC function was either assessed by immu-
nohistochemistry or other peripheral specimens (e.g.
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Fig. 1 Mechanism of action of neurotoxins inducing PD. MPTP readily crosses the blood-brain barrier and is taken up by nearby astroglia which
subsequently convert it to MPP* via MAO-B. Extracellularly released MPP* is then actively taken up via DAT and accumulates within mitochondria
of DA neurons where it inhibits mitochondrial CI of the ETC resulting in ROS production and energetic deficiency. Similarly, the pesticide rotenone
(Rot), due to its high lipophilicity, readily crosses biological membranes and reaches the inner mitochondrial membrane where it inhibits Cl. In
contrast, paraquat (PQ*") relies on the LAT1 to cross the blood-brain barrier. Hereafter, it is taken up by DAT or OCT3 into DA neurons and generates
ROS by redox cycling at Cl and Clil of the ETC. Abbreviations: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP); 1-methyl-4-phenylpyridinium
(MPP*); coenzyme Q (CoQ); dopamine (DA); dopamine transporter (DAT); L-amino acid transporter (LAT1); mitochondrial Complex | (Cl);
mitochondrial Complex Il (ClI); mitochondrial Complex Il (ClIl); mitochondrial Complex IV (CIV); mitochondrial Complex V (CV); monoamino oxidase
B (MAO-B); organic cation transporter 3 (OCT3); paraquat (PQ”"); reactive oxygen species (ROS); rotenone (Rot); vesicular monoamino transporter

(VMAT). Created with BioRender.com
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lymphocytes, platelets, or muscle) were analyzed, CI dys-
function was only inconsistently reported [47].

Regarding the lack of concordance in some studies it
is important to consider that most experiments either
used mixed tissue homogenates (neuronal and non-
neuronal cells), or investigated peripheral tissue, which
from our current point of view is likely not the main
manifestation place of PD pathology. Future studies
investigating ETC dysfunction in human postmortem
tissue using now available cell-type specific approaches
might therefore possess great potential to further
enhance our understanding of mitochondrial dysfunc-
tion in idiopathic PD [43].

Another line of evidence pointing to mitochon-
drial dysfunction in PD is based on the observation of
increased mitochondrial DNA (mtDNA) aberrations in
tissue samples of deceased patients with idiopathic PD.
While initial approaches investigating mtDNA deletions
produced conflicting results [51-53], more recent stud-
ies confirmed an increased amount of mtDNA deletions
specifically in postmortem SNc tissue of PD patients
[54-56]. In addition, patients carrying a mutation of the
polymerase gamma gene, the only polymerase present in
human mitochondria, develop rare genetic syndromes
including parkinsonian symptoms and loss of SNc neu-
rons [57]. Taken together, there is mounting clear evi-
dence implicating mitochondrial dysfunction as a key
disease hallmark in idiopathic PD.

Mitochondrial dysfunction is tightly linked to genetic PD
Although only roughly 10% of PD cases are associated
with defined genetic alterations, the study of these famil-
ial PD (PARK) genes has led to major advances in our
understanding of PD etiopathogenesis. While numerous
PARK genes have been identified, several of these are
directly linked to impaired mitochondrial function and
integrity (Table 1).

Mutations of the genes coding for PINK1 (PARK6)
and Parkin (PARK2) are the most frequent causes of
autosomal recessive early-onset PD. Their clinical mani-
festation is characterized by relatively pure motor symp-
tomatology and L-DOPA responsiveness, which can be
accompanied by dopamimetica associated dyskinesia,
hyperreflexia, and sometimes psychiatric symptoms.
Interestingly, histopathological examination of postmor-
tem tissue indicates loss of SNc dopaminergic neurons
and neurons in other brain regions normally vulnerable
in idiopathic PD (e.g., locus coeruleus, nucleus basa-
lis meynert). However, presence of aSYN inclusions, a
hallmark of idiopathic PD, is not a consistent feature of
these PD cases [111-116]. At the cellular level, PINK1
and Parkin play key roles in mitochondrial quality con-
trol mechanisms and signaling cascades in response to
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mitochondrial damage [67]. PINK1/Parkin can not only
initiate mitophagy, but also control fission and fusion
of mitochondria, promote the generation of mitochon-
dria derived vesicles and induce mitochondrial biogen-
esis [70, 117-121]. In fibroblasts from PINK1 and Parkin
familial PD cases, loss of protein function leads to ETC
impairment with reduced ATP production and high lev-
els of ROS [122-124]. While experimental studies using
Parkin-KO mice revealed lower levels of mitochondrial
respiratory capacity [125-127], PINK1-KO mice addi-
tionally exhibited defects in CI function, reduced Ca*"
buffering capacity, and impairments in mitochondrial
membrane potential [128-131]. Comparable findings
have also been reported in Drosophila Parkin and PINK1
models [71-73, 132-134]. As the underlying patho-
physiological event, increased mitochondrial fission has
been identified in Parkin and PINK1 mutant mice and
Drosophila models [117, 135]. This is supported by the
fact that inhibition of mitochondrial fission via mdivi-1
treatment, was able to rescue mitochondrial function by
normalizing the balance between mitochondrial fission
and fusion [136]. Apart from increased fission, defects in
mitochondrial biogenesis have been shown to contribute
to mitochondrial dysfunction in Parkin deficient human
dopaminergic neurons [121].

Interestingly, there is additional evidence for accumu-
lation of insoluble Parkin within idiopathic PD patients.
While previous studies observed that accumulating Par-
kin is S-nitrosylated [137-140], a more recent study dis-
covered that Parkin itself functions as a redox molecule
by providing antioxidant capacity for human midbrain
neurons. Subsequent oxidizing posttranslational modifi-
cations then contribute to the decrease in Parkin solubil-
ity [141].

Another example indicating mitochondrial driven
parkinsonism, are mutations in the gene coding for DJ1
(PARK?). Resulting loss of function leads to an autoso-
mal recessive form of PD which is less common than
PINK1 or Parkin familial PD. The clinical presentation of
individuals with DJ1 mutations is characterized by early
onset slow progressing parkinsonism, which is frequently
accompanied by non-motor symptomatology (e.g., anxi-
ety, cognitive decline, and psychotic symptoms), and
good L-DOPA responsiveness [142]. Notably, postmor-
tem histopathological analysis revealed widespread corti-
cal and subcortical LP and neurodegeneration [77]. DJ1
is involved in counteracting oxidative stress and subse-
quent mitochondrial dysfunction under physiological
conditions. In the experimental setting, DJ1 depletion
leads to impaired mitochondrial respiration, high levels
of intracellular ROS, compromised mitochondrial mem-
brane potential, and altered mitochondrial morphology
[78, 143-145]. Furthermore, mutated DJ1 is translocated
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from the cytosol into the mitochondrial matrix where
it gets degraded [146]. Despite the increasing interest
in DJ1’s function, the molecular mechanisms remain
incompletely understood. Several lines of evidence sug-
gest that DJ1 is a redox-sensitive protein which relies
on cysteine oxidation to sense oxidative stress and then
counteract this stress through activation of different sign-
aling pathways [147-149]. Other reports suggest that D]1
may additionally possess chaperone activity [150, 151],
supported by data showing that DJ1 is able to attenu-
ate aSYN aggregation [152], and the observation that
human induced pluripotent stem cells (IPSCs) derived
from fibroblasts of DJ1 PD patients exhibit increased
aSYN pathology [153]. However, further evidence high-
lights DJ1’s enzymatic functions, including glyoxalase
and deglycase activities, showing that DJ1 can decrease
reactive carbonyl products and repair glycated nucleic
acids [154, 155]. Albeit the exact biological interplay of
these processes is still debated, DJ1 clearly links antioxi-
dant pathways, mitochondrial dysfunction, and aSYN
aggregation.

More recently mutations affecting vacuolar protein
sorting 35 (VPS35=PARK17) have been linked to late-
onset autosomal dominant PD, and VPS13C (PARK23)
to early onset rapid progressing autosomal recessive PD
[100, 156, 157]. Although the exact pathophysiological
mechanisms are still intensively debated, experimental
studies on VPS35 mutant fibroblasts, mice, or cell culture
systems reported increased mitochondrial fragmentation,
disturbed mitochondrial fission and fusion dynamics,
and abnormal configuration of ETC CI [101-103, 158].
Mechanistically, VPS35 is a part of the retromer complex
and thereby plays an important role in endosomal sorting
and trafficking of proteins. VPS35 mutations have been
shown to lead to an enhanced interaction of VPS35 with
DLP1, which subsequently causes increased turnover of
mitochondrial DLP1 complex, thereby fueling excessive
mitochondrial fission, finally culminating in mitochon-
drial dysfunction and fragmentation [101, 158]. Further,
VPS13C mutations have been shown to decrease mito-
chondrial membrane potential, promote mitochondrial
fragmentation, and elevate mitophagy [100]. In addition,
mutations in FBXO7 (PARK15), causing a rare syndrome
of juvenile parkinsonism with pyramidal signs, have been
linked to impaired mitophagy and decreased CI function
[94].

Taken together, the familial PD cases not only show us
that there is a clear link between genetic PD and mito-
chondrial dysfunction, they also highlight that multiple
mitochondrial pathways may be impaired, including CI
function, mitophagy, fission and fusion, and mitochon-
drial biogenesis.
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Causal link between a-synuclein pathology

and mitochondrial dysfunction

While for a portion of PD patients, the occurrence of
mitochondrial dysfunction can be explained by PARK
genes, the etiology of idiopathic PD is still a matter of
intensive debate. However, broad experimental evidence
stemming from observations in isolated mitochon-
dria [59-61, 159], and rodents [62, 63], suggests aSYN
pathology as a major source of mitochondrial dysfunc-
tion (Fig. 2). Under physiological conditions, monomeric
aSYN was shown to modulate the function of the mito-
chondrial ATP synthase subunit alpha, as aSYN knock-
out mice showed reduced ATP synthase efficiency
and reduced ATP levels [64]. Similarly, another study
employing aSYN deficient mice observed an altered neu-
ronal mitochondrial membrane structure and CI defi-
ciency [65].

In the presence of aSYN pathology, meaning exces-
sive amounts of overexpressed monomeric aSYN or
existence of oligomeric and fibrillar aSYN, several stud-
ies reported decreased mitochondrial CI activity, altera-
tions of mitochondrial membrane potential, and elevated
oxidative stress levels [59, 63, 66, 160—162]. The effect
on CI is further substantiated by another study which
reported a dose-dependent effect of aSYN pathology on
CI inhibition [163]. Based on the observation that aSYN
knock-out mice were resistant to MPTP induced toxic-
ity, it has been hypothesized that aSYN directly influ-
ences CI function [35, 164]. This view is supported by
studies which reported that overexpression of human
aSYN in wildtype mice or use of SNCA A30P mutated
transgenic mice worsened MPTP induced toxicity [165,
166]. Similar findings have also been observed for the
CI inhibitor rotenone [167, 168]. However, CI does not
seem to be the only engagement point for aSYN pathol-
ogy. More recently, interaction of pathological aSYN
oligomers with the ATP synthase subunit alpha in com-
bination with mitochondrial permeability transition
pore opening has been suggested as a mediator of aSYN
induced mitochondrial dysfunction [169]. Further, it has
been shown that aSYN oligomers interact with the outer
mitochondrial membrane protein TOM20 [170, 171]. As
a consequence of aSYN binding to TOM20, mitochon-
drial protein import is impaired causing ETC malfunc-
tion, accumulation of ROS and loss of mitochondrial
membrane potential [170]. aSYN induced loosening of
contacts between mitochondria and the endoplasmic
reticulum (ER), which are considered essential for proper
Ca”* exchange between those two organelles, has been
reported as another possible cause of reduced mitochon-
drial respiration, primarily by dysregulated intracellular
Ca** levels [172, 173].
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Taken together, these studies not only show that aSYN
pathology can trigger mitochondrial dysfunction, they
reveal that there are several independent pathways how
aSYN pathology affects mitochondrial function (Fig. 2).
Notably, many of those pathways converge to a shared
pathological phenotype exhibiting increased cellular and
mitochondrial ROS, impairment of mitochondrial mem-
brane potential, and reduced mitochondrial respiration.

Pathways linking mitochondrial dysfunction

to neurodegeneration

Does mitochondrial dysfunction cause neurodegenera-
tion in PD, or is it simply a disease tombstone?

While this question is difficult to answer for idiopathic
PD, important information can be gleaned again from
familial PD cases by looking at those few histopatho-
logical postmortem reports which are available. Nota-
bly, PINK1 as well as Parkin, and DJ1 mutation carriers,
all familial PD cases where PD is thought to be majorly
driven by mitochondrial dysfunction, exhibit marked
neuronal cell loss within the SNc and other susceptible
brain regions [77, 111, 112]. This clearly indicates that
at least genetically driven mitochondrial dysfunction is
causative of neuronal cell loss in these individuals. This
is supported by the finding that targeted disruption of
mitochondrial CI in mice leads to dopaminergic degener-
ation culminating in a human-like type of parkinsonism
[43]. However, what is less clear is whether mitochon-
drial dysfunction is necessary for PD.

As mentioned above, mitochondrial dysfunction and
damage can contribute to several pathological cas-
cades implicated in PD [67, 174, 175]. As shown by
using direct ratiometric probes, many at-risk neurons
have been found to manifest elevated levels of mito-
chondrial oxidant stress [30, 31, 176]. Sustained oxidant
stress damages membranes, proteins, and DNA. This
damage elevates mitophagy in SNc dopaminergic neu-
rons [176], thereby diminishing the overall autophagic
capacity. Cytosolic ROS can further damage proteins of
the mitophagy pathway [138] and increase mitochon-
drial dysfunction. Mitochondrially-generated ROS also
compromises lysosomal and proteasomal function and
increases the accumulation of misfolded forms of aSYN
[153, 177]. Further, intracellular ROS triggers induction
of parthanatos, an apoptosis independent pathway of
neurodegeneration [178]. In parallel, damaged mitochon-
dria or excessive mitochondrial stress can induce mtDNA
release into the cytosol and subsequent increases in the
production of proinflammatory cytokines [179, 180], as
shown in Parkin-KO mice which also exhibited a POLG
mutation [181]. Mitochondrial dysfunction is further
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connected to neuroinflammation by the observation that
loss of PINK1 and Parkin function results in increased
mitochondrial antigen presentation and subsequent acti-
vation of cytotoxic T-cells [182]. Intestinal infection with
Gram-negative bacteria in PINK1 mice enhanced mito-
chondrial antigen presentation which was followed by
elevated levels of CD8* T-cells in the brain and periphery
[183].

As indicated above, failure of mitochondrial quality
control mechanisms defines another pathway to neu-
rodegeneration in PD. Substantial evidence shows that
the concerted interplay of PINK1 and Parkin is essen-
tial for maintaining mitochondrial health. Loss of func-
tion mutations result in disruption of cellular mitophagy,
as well as impaired fusion and fission of mitochondria,
and reduced generation of mitochondrial derived vesi-
cles [67]. As a consequence, damaged mitochondria
accumulate, cytochrome ¢ and other proapoptotic pro-
teins are released into the cytosol, and apoptosis might
be induced. Damaged mitochondria due to loss of mito-
chondrial quality control mechanisms also contribute to
the generation of oxidative stress and mtDNA mutations.
Importantly, in idiopathic PD, LP also directly inactivates
Parkin and thereby contributes to failure of mitochon-
drial quality control even in the absence of genetic muta-
tions [138, 139].

Intracellular Ca?" signaling also may contribute to
pathogenesis [5]. At-risk neurons have low intrinsic Ca**
buffering capacity and strong engagement of both plasma
membrane and ER-dependent Ca®* signaling, leading to
large cytosolic oscillations in intracellular Ca** concen-
tration [176]. Elevated intracellular Ca?>" can promote
aSYN misfolding and aggregation [184, 185] thereby link-
ing aSYN and Ca** in a vicious cycle.

Another key hallmark of PD is impaired cellular pro-
teasomal and lysosomal mechanisms [153, 186, 187].
Proteasomal degradation as well as lysosomal function
are energy consuming processes. It is easy to infer that
compromised ATP production by mitochondria will
reduce their functional capacity. Thus, elevated mito-
chondrial ROS production — and the resulting cellular
damage — not only increases the burden on these sys-
tems, but with declining mitochondrial capacity it will
likely diminish their capacity. As a consequence, not only
aSYN aggregation is promoted but clearance of oxidized
proteins is reduced, leading to further generation of ROS
and oxidative damage in terms of a feedforward mecha-
nism. Moreover, there is evidence for dynamic mito-
chondria-lysosome contacts which allow inter-organelle
crosstalk. Interestingly, patient derived neurons harbor-
ing a heterozygous mutation within the gene coding for
B-glucocerebrosidase (GBAI) show disturbed loosening
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of these contact sites which resulted in prolonged tether-
ing and disruption of intracellular mitochondrial distri-
bution [188].

Taken together, current evidence indicates that there
are several mitochondrial pathways which are tightly
linked to other pathogenic mechanisms of PD. While
some of these pathways are highly interdependent, oth-
ers act in parallel to each other. From a translational
standpoint, this suggests that, as in cancer, new therapeu-
tic approaches will either need to target several of these
pathways at once or be tailored to pathological endpoints
shared by these pathways.

Therapeutic approaches targeting mitochondrial
dysfunction in PD

One of the greatest challenges facing the biomedical
community is the development of a disease-modifying
therapy for PD. Several clinical trials have been attempted
to address this challenge, but none have succeeded. Sev-
eral have targeted mitochondrial function either directly
or indirectly.

Given the recognition that mitochondrial oxidant stress
is a potential driver of pathogenesis, some of the earli-
est trials aimed at reducing it (Table 2). For example, the
antioxidant coenzyme Q10 (CoQ10) was tested in sev-
eral trials, as was minocycline; they all failed [252, 253].
Mitochondrially-targeted antioxidants, like MitoQ, Mito-
VitE, MitoApocynin and MitoTEMPOL were developed
to achieve better target engagement and showed promise

in pre-clinical experiments, but this general strategy has
not shown a clear benefit in PD patients [207]. One of the
key issues with these trials is that it is difficult to demon-
strate adequate target engagement and biological efficacy
of these compounds in humans. So, it is unclear whether
they are testing the core hypothesis or not.

A related approach is to try and boost brain concen-
trations of glutathione (Table 2). Nigral levels of glu-
tathione are lower in PD patients, possibly because of an
increased reliance upon glycolysis for ATP production in
PD patients [210]. Elevating glutathione has been pro-
posed and explored in preclinical and clinical trials [213].
However, it is unclear whether this is simply an effect
of mitochondrial dysfunction and whether adequate
brain concentrations can be achieved with oral dos-
ing. N-Acetyl cysteine (NAC), an approved drug to treat
acetaminophen induced liver failure [254], increases cel-
lular glutathione levels in vivo. Notably, weekly intrave-
nous administration of NAC over 3 months in idiopathic
PD patients revealed a significant clinical improvement
which was paralleled by increased dopamine transporter
binding during ioflupane imaging (DaTSCAN) [217].

Another consequence of mitochondrial dysfunction is
a lowering of nicotinamide adenine dinucleotide (NAD)
[255]. Mitochondrial CI metabolizes NADH to NAD+.
Boosting cellular NAD levels by dietary supplements of
the precursor nicotinamide (vitamin B3) has neuropro-
tective effects in some preclinical models of PD [220].
The recent phase I study NADPARK in which drug naive
de novo PD patients received 1000mg of nicotinamide
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riboside over 30days achieved some desired metabolic
outcomes and a mild clinical benefit [223].

A related approach is based upon epidemiological stud-
ies showing reduced risk of developing PD when using
antidiabetic drugs like exenatide or pioglitazone [256].
Both drugs have been studied intensively in preclinical
animal models and clinical PD trials (Table 3). Exenatide
appears to exert its neuroprotective effects by dampen-
ing neuroinflammatory pathways, reduction of ROS,
lowering intracellular Ca*" levels, restoring mitophagy,
and improving overall bioenergetic efficiency [258]. In a
randomized double-blind placebo-controlled trial on PD
patients under symptomatic dopamine replacement ther-
apy, 48 weeks of exenatide, slightly although significantly,
improved motor symptoms [260]. Currently, a phase III
trial [261] is investigating the effects of a two-year exena-
tide treatment on motor symptoms in PD patients, which
are again also receiving symptomatic dopamine replace-
ment therapy. In contrast, 52 weeks long treatment with
liraglutide, also a glucagon-like peptide 1 (GLP-1) ago-
nist, resulted in improvement of non-motor symptoms
and activities of daily living while motor symptoms were
unchanged [262]. While preclinical models suggest a
mitochondria-based mechanism of action, there is no
robust data from clinical studies regarding GLP-1 ago-
nist’s cellular mechanism of action.

Pioglitazone, a peroxisome proliferator-activated
receptor gamma (PPARy) agonist, also has been con-
siderably studied in PD. In animal studies, it reduced
neuroinflammation, suppressed nitric oxide synthase
activity, improved proteasomal clearance, and enhanced
mitochondrial biogenesis [264, 279]. However, a phase II
clinical trial in early PD patients found no clinical benefit
of 44 weeks treatment with pioglitazone on disease pro-
gression [265].

As outlined above, mitochondria are highly dynamic
organelles that form a complex network within the cell
soma, axon and down to the synaptic buttons. Maintain-
ing this network in a viable state relies on constant spa-
tial redistribution via mitochondrial trafficking, as well as
balanced mitochondrial fusion and fission, to keep a pool
of healthy mitochondria at any time. However, many of
these mitochondrial quality control processes appear to
be disrupted in PD patients [67]. Based on that, several
preclinical approaches have been developed to correct
this putative defect in mitochondrial dynamics (Table 3).
Inhibition of mitochondrial fission via the mitochon-
drial division inhibitor 1 (mdivi-1) has been reported
to be neuroprotective in an aSYN overexpression rat
model. Treatment with mdivi-1, reduced mitochondrial
fragmentation and was simultaneously associated with
reduced oxidative stress and improved mitochondrial
health [267]. Further, accumulation of the mitochondrial
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adaptor protein Miro on the outer mitochondrial mem-
brane has been identified in PD and linked to delayed
mitophagy in experimental PD models [271]. Pharmaco-
logical reduction of Miro in cellular and PD Drosophila
fly models was able to restore mitophagy and decrease
neuronal cell loss [272].

Further, gene therapy approaches targeting PINK1 and
Parkin deficiencies have been explored (Table 3). PINK1
overexpression not only ameliorated mitochondrial dys-
function resulting from prior induced PINKI1 deficiency
in PINK1 mutant Drosophila models [71, 280], but also
was protective in an aSYN induced phenotype in aSYN
transgenic Drosophila PD model [277], and protected
against neuronal loss and mitochondrial dysfunction in
in vitro and in vivo MPTP models [274]. Overexpression
of parkin has similar effects [275, 276]. A protein-based
therapy using a cell-permeable Parkin was protective
in 6-hydroxydopamine (6-OHDA) and adeno-associ-
ated viral vector (AAV) mouse models, presumably by
enhancing mitochondrial quality control via facilitating
mitochondrial biogenesis, and promoting mitophagy
[278]. It should be noted however that the predictive
validity of both the 6-OHDA and MPTP models of PD
is questionable, as all of the failed drugs have passed this
test in preclinical work.

Limiting mitochondrial stimulation as a new therapeutic
approach

As outlined above, most of the mitochondrially-targeted,
disease-modifying strategies that have moved to clinical
trials, or are in the planning stages, are aimed at either
limiting the consequences of mitochondrial damage
(e.g., CoQ10), enhancing the clearance of damaged mito-
chondria (e.g., Miro targeting) or blunting the inflamma-
tory consequences of mitochondrial dysfunction (e.g.,
exenatide) [252, 253]. An alternative strategy is to first
diminish mitochondrial damage. The mechanistic stud-
ies focusing on the origins of mitochondrial oxidant
stress in at-risk neurons (like SNc dopaminergic neu-
rons) point to their feedforward stimulation by plasma
membrane L-type Ca®* channels. Inhibiting L-type chan-
nels with dihydropyridine negative allosteric modulators
lowered mitochondrial oxidant stress and mitophagy in
at-risk dopaminergic neurons in animal models [145,
176]. They also diminished mitochondrial oxidant stress
in a model of recessive PD [145], and showed neuro-
protective effects in the MPTP and 6-OHDA models of
PD [281, 282]. More importantly, epidemiological stud-
ies have shown that use of dihydropyridines is associ-
ated with a reduced risk of developing PD [283, 284].
These observations motivated two clinical trials with the
dihydropyridine isradipine. Isradipine was chosen for
these trials because it has the highest relative affinity for
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the sub-class of L-type channel thought to be the most
important in driving mitochondrial stress in SNc dopa-
minergic neurons (channels with a pore-forming Cavl.3
subunit). While initial reports stated that there was no
evidence of efficacy in modifying disease progression
[285], a subsequent re-analysis reopened the discus-
sion on an extended release formulation of isradipine,
suggesting that there may be a disease modifying effect
based on the UPDRS assessed progression in patients
given 10 mg isradipine per day [286].

Current gaps in our understanding

Based on our current knowledge of mitochondrial dys-
function in PD, there are at least four major gaps in our
understanding.

First, the chain of events arising from mitochondrial
dysfunction needs to be more rigorously character-
ized. As in modern cancer treatment, this would allow
combination therapies that maximize biological effi-
cacy and minimize unwanted side-effects of treatment
(see Tables 2 and 3).

Second, there need to be more objective, and quantita-
tive measures of disease progression. The reliance upon
highly variable clinical rating scales adds an enormous
amount of noise to clinical trial outcomes and prevents
modest disease-modifying effects to be resolved. These
biomarkers should include ones that assess mitochon-
drial function and dysfunction [253]. Current strategies
are mainly focused on improving neuroimaging of cellu-
lar bioenergetics (e.g., magnetic resonance spectroscopy).
However, studies should also implement blood- or CSF-
based biomarkers as recently demonstrated [223].

Third, we need to have a better understanding of the
mitochondrial pathways leading to neurodegeneration in
the different PD subtypes [287]. This could allow person-
alized disease-modification therapies and better target
engagement.

Fourth, we need to know whether the mechanisms
driving disease progression in PD are time invariant or
not. It could be that mitochondrial dysfunction is impor-
tant in the early stages of PD pathogenesis, but not in
later stages. For example, the later stages of cell loss in
PD could be driven by network dysfunction caused by
less than complete disruption of at-risk neuron func-
tion. A clear understanding of these mechanisms would
allow disease-modifying treatments to be tailored to the
respective disease stage.

Conclusions

Mitochondrial dysfunction is a core hallmark of
PD. Preclinical, epidemiological, histopathological,
and clinical trial data point towards mitochondrial
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dysfunction as being a significant disease driving factor
in idiopathic and familial PD. On the cellular level, core
features are CI impairment, increased oxidative stress,
disturbed mitochondrial quality control mechanisms,
and bioenergetic deficiency. Current experimental evi-
dence indicates that there are several mitochondrial
pathways that contribute to PD pathogenesis. Targeting
more than one of these pathways at the same time may
be a more effective strategy than trying to affect just
one. Moreover, given that the pathology in PD is largely
in the brain, drug delivery strategies that optimize brain
delivery and target engagement need to be pursued. So,
while no treatment has been unequivocally shown to
slow disease progression in the early stage of PD, there
remains optimism that this situation will change soon.

Abbreviations

6-OHDA 6-hydroxydopamine

AAV Adeno-associated viral vector
aSYN Alpha-synuclein

ATP Adenosine triphosphate
ATP13A2  ATPase type 13A2

a Mitochondrial complex |

@] Mitochondrial complex I

cli Mitochondrial complex I

Clv Mitochondrial complex IV
CHCHD2  Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing protein 2
CoQ10 Coenzyme Q10

DA Dopamine

DaTSCAN  Dopamine transporter ioflupane imaging
DLP1 Dynamin-1-like protein

D1 Protein deglycase DJ1

ER Endoplasmic reticulum

ETC Electron transport chain

FBXO7 F-box protein 7

GBA1 -glucocerebrosidase

GLP-1 Glucagon-like peptide 1

HSP31 Heat shock protein 31

IPSCs Induced pluripotent stem cells

L-DOPA Levodopa

LP Lewy pathology

LRRK2 Leucine-rich repeat kinase 2

mdivi-1 Mitochondrial division inhibitor 1

MPP* 1-methyl-4-phenylpyridinium

MPPP 1-methyl-4-phenyl-4-propionoxy-piperidine
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
mtDNA Mitochondrial DNA

NAC N-Acetyl cysteine

NAD Nicotinamide adenine dinucleotide
OXPHOS  Oxidative phosphorylation

PARK Familial PD genes

Parkin E3-Ubiquitin-protein-Ligase Parkin

PD Parkinson’s disease

PINK1 PTEN-induced kinase-1

PPARy Peroxisome proliferator-activated receptor gamma
POLG Gene coding for DNA polymerase gamma

ROS Reactive oxygen species

SNc Substantia nigra pars compacta

SNCA Gene coding for alpha-synuclein

TOM Translocase of outer mitochondrial membrane
UDCA Ursodeoxycholic acid

VPS35 Vacuolar protein sorting 35

VPS13C Vacuolar protein sorting 13 homolog C
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