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Abstract 

Background  Most Alzheimer’s Disease (AD) cases also exhibit limbic predominant age-related TDP-43 encepha-
lopathy neuropathological changes (LATE-NC), besides amyloid-β plaques and neurofibrillary tangles (NFTs) contain-
ing hyperphosphorylated tau (p-tau). LATE-NC is characterized by cytoplasmic aggregates positive for pathological 
TDP-43 and is associated with more severe clinical outcomes in AD, compared to AD cases lacking TDP-43 pathology 
TDP-43: AD(LATE-NC-). Accumulating evidence suggests that TDP-43 and p-tau interact and exhibit pathological 
synergy during AD pathogenesis. However, it is not yet fully understood how the presence of TDP-43 affects p-tau 
aggregation in symptomatic AD.

Methods  In this study, we investigated the impact of TDP-43 proteinopathy on p-tau pathology with different 
approaches: histologically, in a human post-mortem cohort (n = 98), as well as functionally using a tau biosensor cell 
line and TDP-43A315T transgenic mice.

Results  We found that AD cases with comorbid LATE-NC, AD(LATE-NC+), have increased burdens of pretangles 
and/or NFTs as well as increased brain levels of p-tau199, compared to AD(LATE-NC-) cases and controls. The burden 
of TDP-43 pathology was also correlated with the Braak NFT stages. A tau biosensor cell line treated with sarkosyl-
insoluble, brain-derived homogenates from AD(LATE-NC+) cases displayed exacerbated p-tau seeding, compared 
to control and AD(LATE-NC-)-treated cells. Consistently, TDP-43A315T mice injected with AD(LATE-NC+)-derived extracts 
also exhibited a more severe hippocampal seeding, compared to the remaining experimental groups, albeit no TDP-
43 aggregation was observed.

Conclusions  Our findings extend the current knowledge by supporting a functional synergy between TDP-
43 and p-tau. We further demonstrate that TDP-43 pathology worsens p-tau aggregation in an indirect manner 
and increases its seeding potential, probably by increasing p-tau levels. This may ultimately contribute to tau-driven 
neurotoxicity and cell death. Because most AD cases present with comorbid LATE-NC, this study has an impact 
on the understanding of TDP-43 and tau pathogenesis in AD and LATE, which account for the majority of dementia 
cases worldwide. Moreover, it highlights the need for the development of a biomarker that detects TDP-43 during life, 
in order to properly stratify AD and LATE patients.
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Background
Transactive response DNA-binding protein 43 kDa 
(TDP-43) constitutes the major pathological hallmark of 
amyotrophic lateral sclerosis (ALS) and frontotemporal 
lobar degeneration with TDP-43 inclusions (FTLD-TDP) 
[1]. TDP-43 was also found to accumulate in limbic areas 
of the majority of Alzheimer’s Disease (AD) patients 
[2–4], in addition to amyloid-β (Aβ) and tau proteins, 
and has been recently defined as limbic-predominant 
age-related TDP-43 encephalopathy neuropathological 
changes (LATE-NC) [5]. Importantly, this co-pathology 
is associated with smaller hippocampi, worse cogni-
tive decline and a more severe disease outcome in AD 
patients [6, 7].

Accumulating evidence suggests that TDP-43 and 
p-tau exhibit pathological synergy during AD patho-
genesis, pointing to a shared pathological cascade [8, 9]. 
Indeed, we and others have observed that symptomatic 
AD cases with LATE-NC, i.e., AD(LATE-NC+), display 
higher Braak neurofibrillary tangle (NFT) stages and 
an increased p-tau burden [6, 10, 11], probably due to 
common upstream factors that influence both patholo-
gies, such as the APOE ε4 allele [9, 12–14]. Importantly, 
TDP-43 and p-tau can co-localize in the same neurons 
and physically interact in AD(LATE-NC+), regardless 
of dementia status [15–17]. Recent studies using animal 
models have also observed that TDP-43 is able to modu-
late tau aggregation, specifically by exacerbating it, lead-
ing to increased tau pathology and neurotoxicity [17, 18], 
however, it is not yet fully clear how TDP-43 impacts 
p-tau aggregation.

Due to the presence of a “prion-like” glycine-rich 
domain in the C-terminal region, TDP-43 is prone to 
self-template and spread to other brain regions [19, 20]. 
This spread has been well documented in human ALS 
[21, 22], FTLD-TDP [23, 24] and AD [5, 25]. The injec-
tion of patient-derived material in overexpression models 
has shown to induce pathological seeding, constituting a 
reliable model to study protein aggregation in vivo. Stud-
ies have shown that human AD-derived tau [26, 27] as 
well as FTLD-TDP-derived TDP-43 seeds [28] are able to 
seed in the mouse brain, recapitulating the proteopathic 
spreading patterns in the brains of AD and FTLD-TDP 
brains, respectively. Considerable efforts have been made 
to study TDP-43 aggregation and seeding properties 
in vitro [20, 29]. However, it is not yet clear which mech-
anisms drive AD-derived TDP-43 and tau pathogenesis.

Here, we investigated the impact of TDP-43 pathology 
on tau aggregation in symptomatic AD by investigating a 
cohort of 98 human autopsy cases as well as using in vivo 
and in vitro approaches.

We report that AD(LATE-NC+) cases exhibit 
increased burdens of p-tau as well as increased brain 

levels of p-tau199. We also observed that cells and ani-
mals exposed to AD(LATE-NC+) brain lysates exhibited 
increased p-tau seeding compared to AD cases lack-
ing LATE-NC and control extracts. Overall, our find-
ings demonstrate that TDP-43 worsens p-tau pathology, 
which is then reflected in higher burdens and increased 
seeding potential of p-tau in the brains of AD(LATE-
NC+) patients.

Methods
Human autopsy cases
A total of 98 human autopsy cases were used in this 
study, including 26 non-demented controls without AD 
neuropathological changes (ADNC), 67 demented AD 
cases, 55 of which exhibiting comorbid LATE-NC and 
5 FTLD-TDP (subtypes A, B or C [30]) cases (Table  1). 
Among these, brains from 34 cases were used for bio-
chemical analyses and in  vitro experiments and brain 
tissue from 4 cases was used for stereotaxic injections 
in vivo (Table 2).

The brains were collected at university and municipal 
hospitals in Ulm (Germany) and Leuven (Belgium) as well 
as well as from the brainbank donated for research by 
GE Healthcare after the phase III flutemetamol autopsy 
study had concluded [31]. Autopsies were performed in 
accordance with German/Belgian law after approval by 
the ethical committees from Ulm (Germany, study num-
ber 54/08) and UZ Leuven (Belgium, study numbers 
S-59292, S-52791, S-66705). The samples received from 
GE-Healthcare clinical trials were recruited after ethical 
approval (ClinicalTrials.gov identifiers NCT01165554, 
and NCT02090855).

Phases of Aβ plaque deposition according to Thal 
et  al. were assessed as described previously, based on 
anti-Aβ17-24 stained brain sections [32]. Braak stages for 
NFTs spread in the brain were determined as previously 
described based on anti-p-tau202/205 immunostained 
sections [33]. The neuropathological diagnosis of ADNC 
was performed as published by the National Institute 
of Aging and Alzheimer Association working group 
(NIA-AA criteria) [34]. LATE-NC was diagnosed and 
staged according to the recently published guidelines 
from a consensus working group [5, 35]. Briefly, LATE-
NC was considered if neuronal cytoplasmic inclusions, 
tangle-like inclusions or dystrophic neurites positive for 
pTDP-43 (409/410, 1:5000, #22309–1-AP, Proteintech, 
Rosemont, IL) were observed in one or more of the fol-
lowing regions: amygdala, posterior hippocampus and 
frontal cortex. Global Clinical dementia rating (CDR) 
scores were retrospectively assessed according to previ-
ously established guidelines [36].

Stages of α-synuclein pathology (= Braak LBD stages) 
were determined according to Braak et  al., 2003 [37]. 
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Briefly, in stages 1 and 2, the pathology is mostly confined 
to the medulla oblongata. The midbrain becomes affected 
in stage 3 and the temporal mesocortex and allocortex 
are affected at stage 4. Stages 5 and 6 are characterized by 
α-synuclein pathology in neocortical areas.

APOE ε4 genotypes of these cases were obtained as 
described previously [38]. DNA was extracted from 
fresh frozen or formaldehyde-fixed, paraffin-embedded 
tissue and PCR was performed followed by enzymatic 
digestion.

TDP‑43A315T mouse model
Heterozygous mice overexpressing a TDP-43 construct 
with the C-terminal A315T mutation driven by the 
mouse prion protein (PrP) promoter were used in this 
study, originally developed by Wegorzewska et  al. [39]. 
Transgenic mice were bred by continuous backcross-
ing of heterozygous males with wild-type females on a 
C57BL/6 background. Sixty-six transgenic mice distrib-
uted over five groups (n = 5–10 per group) were injected 
with human brain-derived homogenates from different 
cases (Table 3).

Table 1  Characteristics of the human post-mortem cases used in the study (n = 98: 26 controls, 12 AD (LATE-NC-), 55 AD(LATE-NC+), 
5 FTLD-TDP). NA = non-applicable or not available. Results are displayed in mean ± standard deviation except gender and APOE 
frequencies

Variable Group

Controls AD(LATE-NC-) AD(LATE-NC+) FTLD-TDP

Age 64.77 ± 9.15 80.42 ± 9.68 78.75 ± 9.97 61.67 ± 13.67

Gender frequency (m/f ) 84.6%/15.4% 50%/50% 43.6%/56.4% 60%/40%

Braak NFT Stage 0.54 ± 0.65 3.50 ± 1.09 5.16 ± 1.08 0.83 ± 0.41

Aβ Phase 0 4.60 ± 0.52 4.72 ± 0.69 0

LATE-NC Stage 0.5 ± 0.82 0 2.22 ± 0.54 NA

Braak LBD Stage 0.35 ± 1.23 0.25 ± 0.86 1.43 ± 2.33 0

CERAD Score 0 1.17 ± 0.72 2.42 ± 0.74 0

CDR score 0.17 ± 0.48 1.73 ± 0.90 2.59 ± 0.69 2.50 ± 0.55

NIA-AA score 0 1.92 ± 0.51 2.69 ± 0.58 0

APOE ε4 frequency 11.5% 20% 56.55% 16.7%

APOE ε2 frequency 12% 0% 8.7% NA

Table 2  Characterization of human cases used for stereotactical injection. NA = non-applicable

Neuropathological 
Diagnosis

Injection group Age Sex Aβ phase Braak 
NFT 
stage

LATE-NC stage CERAD core NIA-AA score CDR score

PART​ Control 76 m 0 I 0 0 1 1

ADNC AD(LATE-NC-) 54 f 5 VI 0 2 3 3

ADNC, LATE-NC AD(LATE-NC+) 74 m 5 VI 2 2 3 2

FTLD-TDP type C FTLD-TDP 62 f 0 0 NA 0 0 3

Table 3  Experimental mouse groups with respective protein concentrations which have been stereotactically injected. Injection 
volume = 2,5µL

Group Total 
protein (µg/
mL)

Total protein 
per site (µg)

p-tau181 (pg/mL) p-tau199 (pg/mL) p-tau181 
per site (pg)

p-tau199 
per site (pg)

Total TDP-
43 (ng/mL)

TDP-43 
per site 
(pg)

Control 582 1,46 186,54 13,10 0,47 0,03 113,82 284,55

AD (LATE-NC-) 700 1,75 34198,23 6946,48 85,50 17,37 1482,12 3705,30

AD (LATE-NC +) 826 2,07 177256,20 17700,70 443,14 44,25 1157,58 2893,95

FTLD-TDP 1220 3,05 4022,57 180,91 10,06 0,45 3637,94 9094,85
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After 2 months of age, the animals were given gel food 
(DietGel®31M, ClearH2O, Portland, ME, US) until they 
were sacrificed. This overcame known intestinal obstruc-
tion problems and metabolic problems associated with 
this model [39, 40], and significantly extended their life-
time, up to 16 months [40, 41]. Only 5 out of 59 animals 
used for experiments displayed motor symptoms upon 
end of the experiment. Thus, the gross majority of the 
animals were not diseased at time of death.

All animal care and experiments were approved by the 
KU Leuven Ethical Committee (P126/2018) and carried 
out according to the Belgian law.

Protein extraction and BCA assay
For in  vitro assays, sarkosyl-insoluble homogenates 
from the entorhinal and frontal cortices were used for 
all groups. For in  vivo injections, the entorhinal cortex 
region was selected for the control, AD(LATE-NC+) 
and FTLD-TDP group, as it is a region with common 
co-occurrence of TDP-43 and p-tau pathologies [42]. 
The occipital cortex region from a Braak NFT stage VI 
was selected for the AD(LATE-NC-) group, in order to 
control for the presence of p-tau and absence of TDP-43 
pathologies, respectively.

Proteins were extracted using a previously established 
protocol [28], undergoing sequential centrifugations 
with buffers of increasing strengths. Briefly, grey mat-
ter was solubilized in a high-salt buffer (10mM Tris–
HCL, 0.5M NaCl, 10% sucrose, 1mM DTT, 1% Triton-X 
and a cocktail of protease/phosphatase inhibitors (Halt, 
ThermoFisher Scientific) followed by ultra-centrifuga-
tion. Myelin was removed in 20% sucrose in a high-salt 
buffer, after ultra-centrifugation. The pellet was further 
resuspended in 2% sarkosyl in high-salt buffer, contain-
ing Pierce Universal Nuclease (0.1ug/mL, Thermofisher 
Scientific) for 45 min and ultra-centrifuged. The resulting 
pellet was washed twice in PBS. The final pellet (sarko-
syl-insoluble fraction) was resuspended in 300µL of PBS, 
sonicated and used for ‘sandwich’ ELISA assays, in vitro 
assays and as injection fractions. The extraction proto-
col is depicted in Suppl. Figure 5a, Additional file 1. The 
total protein was quantified using the Pierce® BCA Pro-
tein assay Kit (ThermoFisher Scientific), according to the 
manufacturer’s instructions.

Stereotactic injections
The mice received injections of brain lysates at 12 months 
of age. The animals were anaesthetized by intraperito-
neal injection of ketamine 75 mg/kg and medetomidine 
1mg/kg. After placing the mice in a stereotactic frame 
(72–6049, Harvard Apparatus, Massachusetts, USA), 2,5 
μl of brain lysates were injected in the left hippocampal 
formation (-2,5 mm AP, + 2 mm LR, -1,8 mm DV) using 

a Hamilton syringe (Ref: HH 7635–01). The injection 
was performed at a speed of 1 μl/minute and the nee-
dle was left for an additional five minutes after injection. 
Anesthesia was reversed with Atipamezole. The mice 
received a subcutaneous injection of Buprenorphine for 
pain reduction after surgery. After 4 months of inocula-
tion period, mice were euthanized at 16  months of age 
by decapitation under anesthesia with ketamine and 
medetomidine. The mouse brains and spinal cords were 
extracted and kept in 4% paraformaldehyde for approxi-
mately four days. After paraffin embedment, serial sec-
tions of 5 μm were cut with a microtome and analyzed by 
immunohistochemistry.

Immunohistochemistry
Human and mouse brain sections were deparaffinized 
and processed with citrate buffer for epitope retrieval 
(pH = 6, EnvisionTM Flex Target Retrieval Solution, 
Dako, K8005) for 10 min. Endogenous mouse peroxidase 
was blocked for 5 min in order to avoid unspecific reac-
tions in all slides.

Human sections were stained overnight with the rab-
bit polyclonal anti-pTDP-43 (409/410, dilution 1:5000, 
Proteintech #22309–1-A, Rosemont, IL, USA), rabbit 
polyclonal anti-C-terminal TDP-43 (260-414aa., dilution 
1:1000, Proteintech #12892–1-AP, Rosemont, IL, USA), 
mouse monoclonal anti-p-tau202/205 (dilution 1:1000, 
clone AT8, #MN1020, ThermoFisher Scientific, Waltham, 
MA, USA) and mouse monoclonal anti p-tau181 (dilu-
tion 1:5000, clone AT270, #MN1050, ThermoFisher 
Scientific). A secondary anti-rabbit or anti-mouse HRP 
antibody was applied for 30 min (Vector Laboratories, 
Newark, NJ, USA).

The mouse sections underwent a mouse-on-mouse 
immunohistochemistry protocol allowing the staining of 
mouse tissue with anti-mouse antibodies was performed 
based on a previously described protocol [43]. Then, a 
protein block using normal goat serum was applied for 
10  min. To avoid unspecific reaction with endogenous 
mouse IgGs, mouse monoclonal p-tau202/205 primary 
antibody was coupled with a biotinylated Fab fragment 
and incubated overnight. Next, streptavidin-HRP (1:200) 
was applied to the slides for 30 min in order to detect the 
biotinylated Fab fragment.

3,3’-diaminobenzidine (DAB) was used as a chromogen 
to yield brown reaction products in all sections. Counter-
staining was performed with hematoxylin.

Histological quantifications
For human cases, three representative 200 × fields in the 
CA1 subregion of the hippocampus and the frontal cor-
tex (layers III-IV) were imaged and quantified, respec-
tively. For this, the percentage of affected neurons was 
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calculated by performing a ratio of the average number 
of positive neurons over the total average number of 
neurons in the three fields. For p-tau202/205, NFTs and 
pretangles were considered, whereas for TDP-43, pTDP-
43-positive neuronal cytoplasmic inclusions (NCIs) and 
neurofibrillary tangle-like material were considered, as 
done previously [10]. These quantifications were per-
formed manually with ImageJ® (multipoints).

For mouse tissue samples, two different quantifica-
tions were performed. First, the spatial expansion of 
p-tau lesions from anterior to posterior hippocampus 
was determined. For this, 12 coronal sections cover-
ing the entire hippocampal region were stained with 
p-tau202/205 and scored as negative or positive, based on 
the absence or presence of p-tau pathology, respectively. 
This was considered as hippocampal anterior posterior 
score (hAP score) and was calculated as a percentage of 
the sum of affected sections and represents the propaga-
tion speed of p-tau seeds, as done previously [44]. This 
score directly reflects the spread of the p-tau seeds in the 
mouse hippocampus. Second, to analyze the local p-tau 
severity, a hotspot section from each animal where the 
seeding was most prominent was analyzed. Here, the 
total number of particles was measured (ImageJ®, thresh-
old setting) in an image of 50 × magnification. The per-
centage of C-t TDP-43 nuclear clearance was performed 
with manual counts using ImageJ® (multipoints) with 
one microscopic field of 200 × magnification for CA1-
hippocampus and motor cortex in a Leica (Wetzlar, Ger-
many) microscope.

Neuronal density in human and mouse tissue samples 
was quantified using 200 × magnification fields, using 
stained sections with anti-pTDP-43 or C-t TDP-43, 
respectively. Neurons were identified based on morphol-
ogy and the presence of a clear nucleolus. The total num-
ber of neurons was quantified in each field and results 
were normalized to neurons per mm2.

Immunoprecipitations
100ug of total protein of sarkosyl-insoluble extracts were 
used per reaction. The immunoprecipitation protocol 
was performed as previously described [15]. Briefly, 50µL 
of rabbit magnetic Dynabeads® (Thermofisher Scientific) 
were washed three times and incubated overnight at 4°C 
with 2ug of the primary antibody (pTDP-43 409/410, 
#22309–1-AP, Proteintech, Rosemont, IL) per reac-
tion. Negative IP controls were performed, with 50µL of 
magnetic beads and 100µg of protein of one non-disease 
control and one AD case. Next, the beads were washed 
three times and incubated with each sarkosyl-insoluble 
sample for 2h at room temperature. The unbound frac-
tion was kept as the “pTDP-43 depleted fraction” whereas 
the eluent containing the pTDP-43-bound epitopes was 

denaturated in 2 × LDS sample buffer and kept as the 
“bound” fraction. The total protein of the depleted frac-
tions was calculated through BCA assay. Both fractions 
as well as the input were characterized through western 
blot.

Western blot
10µg of total protein of sarkosyl-insoluble homogenates 
or the pTDP-43 depleted fractions resulting from the 
immunoprecipitation were loaded into NuPAGE 4–12% 
gels, after protein denaturation with LDS and a reducing 
agent. The electrophoresis was performed using MOPS-
SDS running buffer and proteins were transferred into 
0.2 µm nitrocellulose membranes (GE Lifesciences). The 
membranes were then blocked and incubated overnight 
at 4°C with rabbit polyclonal anti-TDP43 (350-414aa., 
Thermofisher Scientific) or mouse monoclonal anti-p-
tau 396/404 (gift from Peter Davies). Membranes were 
washed and incubated with the appropriate secondary 
antibodies for 1 h at room temperature. Immunoblots 
were washed and detected using the SuperSignal™ West-
Dura substrate (ThermoFisher Scientific) and an Amer-
sham Imager 600 (GE Life Sciences, Chicago, IL, USA).

Enzyme‑Linked Immunosorbent Assays (ELISAs)
To quantify the concentration of p-tau and TDP-43 in 
the human brain homogenates, ELISA assays were car-
ried out using commercially available kits (p-tau199 
human ELISA Kit, ThermoFisher Scientific, #KHO0631 
and human full-length (1-300aa.) TDP-43 ELISA Kit, 
Proteintech, #KE00005), according to the manufacturer 
instructions. Duplicates were performed for all samples. 
The final concentrations were interpolated based on the 
polynomial range of the standard curve of the respective 
assays, using GraphPad Prism software 9.3.1 (471). The 
interpolated concentrations as well as definitive p-tau 
and TDP-43 amounts injected per site are displayed in 
Table 3.

Tau biosensor cell line
The tau repeat domain (RD) P301S FRET Biosensor 
(HEK-293) cell line, bought from ATCC (CRL-3275), sta-
bly expresses tau RD P301S-CFP and tau RD P301S-YFP. 
Transfection with tau seeds nucleates the aggregation of 
the endogenous tau reporter proteins, producing a FRET 
signal [26]. For seeding experiments, the cells were cul-
tured in DMEM medium, supplemented with 10% FBS, 
1 mM sodium pyruvate and non-essential amino acids 
(Gibco), under an atmosphere of 5% CO2 at 37°C. Cells 
were plated at 5.000 cells/well in poly-L-Lysine-coated 
384-well PhenoPlates (PerkinElmer). After 16h, cells were 
transfected with brain extracts using lipofectamine 3000 
(Thermofisher Scientific) according to the manufacturer’s 
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protocol. Before the transfection, the samples were soni-
cated for 15 min (30 s on, 30 s off at 10A) with a Bioruptor 
Pico (Diagenode). Each sample (1:20 dilution in Opti-
MEM) was mixed with 3000 reagent and added to a mix-
ture of Opti-MEM medium (Gibco) with Lipofectamine 
3000. After a 15 min incubation at room temperature, 
4μL of mixture was added per well in a total volume of 
40μL. After 48h, cell medium was replaced with 40μL 4% 
formaldehyde and cells were incubated for 5 min, then 
washed three times with PBS. Nuclear staining was per-
formed with DAPI (Thermofisher D1306) diluted (1:5000 
from a stock of 5 mg/mL) in 1% BSA in PBS for 30 min. 
Three individual plate preparations were performed per 
sample as independent experiments (n = 3). High-con-
tent screening was performed using an Operetta (Perki-
nElmer) equipped with proper filter channels to track tau 
aggregation through the FRET signal. Image storage (10 
fields in 4 planes at a 40 × magnification were acquired 
per well) and segmentation analysis was performed using 
the Columbus Plus digital platform (PerkinElmer).

Statistical analysis
All statistical analyses were performed using Graph-
Pad Prism 9.3.1 (471) software or IBM SPSS 28. Multi-
ple linear regressions were used for comparisons of the 
human and in  vivo data. Simple linear regressions were 
used to analyze how pTDP-43 pathology predicts p-tau 
pathology in the CA1 and frontal cortex in human cases. 
Kruskal–Wallis test with post-hoc Dunn’s test, one-way 
ANOVA with post-doc Tuckey’s test or Wilcoxon paired-
matches signed rank rest were used to analyze in  vitro 
data.

Results
Tau pathology is increased in AD cases with LATE‑NC
To investigate the impact of TDP-43 on tau pathology 
in AD cases, we investigated 98 post-mortem human 
cases, including 26 controls without AD, 62 demented 
cases with moderate to high levels of ADNC (of these, 
55 fulfilled the criteria for AD(LATE-NC+) and 12 for 
AD(LATE-NC-)) and 5 FTLD-TDP cases. First, we 
performed immunohistological studies to quantify the 
severity of p-tau in two different brain regions: the 
CA1 subfield of the posterior hippocampus, as well as 
the middle-frontal cortex. We quantified the percent-
age of neurons positive for p-tau202/205-containing 
tangles and pretangles in controls, AD (LATE-NC-) 
and AD(LATE-NC+) cases. For validation purposes, 
we also immunostained 5 controls, 5 AD (LATE-
NC-) and 5 AD(LATE-NC+) cases with anti p-tau181 
(Suppl. Figure 1, Additional file 1). We then performed 
multiple linear regression models controlled for age, 

sex and APOE ε4 status with p-tau pathology (in the 
CA1 or frontal cortex) as the independent variable. 
We found that AD(LATE-NC+) cases exhibited sig-
nificantly increased p-tau pathology in both regions 
when compared to controls (CA1, p = 0.0003; frontal 
cortex p < 0.0001) and to AD (LATE-NC-) cases (CA1, 
p = 0.0066; frontal cortex, p = 0.0097, Fig.  1 a-b, e), 
even after correcting for age and APOE ε4 status. The 
number of dystrophic neurites was also exacerbated 
in the AD(LATE-NC+) group, however this was not 
quantified (Fig.  1e). When performing simple linear 
regressions in the whole cohort independently from 
neuropathological grouping, we observed that the bur-
den of hippocampal pTDP-43 pathology is associated 
with the burden of hippocampal and cortical p-tau 
(p < 0.0001, R2 = 0.24) (Fig.  1c-d). To validate these 
data biochemically, we extracted sarkosyl-insoluble 
homogenates from the entorhinal and frontal cortices 
of 10 controls, 8 AD(LATE-NC-), 11 AD(LATE-NC+) 
and 5 FTLD-TDP cases. We then measured the lev-
els of p-tau199 and total TDP-43 (1-300aa.) in the 
brain extracts through ‘sandwich’ ELISA assays. We 
observed that p-tau199 protein levels were increased 
in AD(LATE-NC+) in both brain regions compared 
to controls (entorhinal and frontal cortex, p < 0.0001), 
AD (LATE-NC-) (entorhinal, p = 0.0043; frontal cortex, 
p < 0.0001) and FTLD-TDP cases (entorhinal and fron-
tal cortex, p < 0.0001), when performing multiple linear 
regression models (Fig. 1f-g). The levels of total (physi-
ological) TDP-43 were decreased in FTLD-TDP cases 
compared to AD(LATE-NC-) and AD(LATE-NC+) in 
both regions, reaching significance in the entorhinal 
region (p = 0.0028 and p = 0.0018, respectively; multiple 
linear regressions) (Fig.  1h-i). This points to a loss-of-
function of nuclear TDP-43 in FTLD-TDP cases.

Of note, the mean Aβ phase and Braak LBD stage 
were similar among AD groups (Table 1).

Finally, we performed a Spearman correlation analysis 
covering all controls and AD cases. pTDP-43 and p-tau 
pathologies were inversely correlated with hippocampal 
but not cortical neuronal density (p = 0.002 and p < 0.001, 
Fig. 1j). Corroborating our previous data, pTDP-43 pathol-
ogy was significantly associated with both hippocampal 
and cortical p-tau pathology (p < 0.0001). Additionally, 
pTDP-43 pathology was associated with Braak NFT stages 
(p < 0.0001), Aβ phases (p < 0.0001), LBD stage (p = 0.007), 
age at death (p < 0.003), APOE ε4 status (p < 0.0001), 
CERAD and NIA-AA scores (p < 0.0001, Fig. 1j).

The distribution of LATE-NC stages among our cohort 
are shown in Suppl. Figure 2, Additional file 1. All mod-
els, corresponding p-values and correlation coefficients 
are displayed in Suppl. Tables 1–13, Additional file 1.
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Fig. 1  Pathological tau expression is increased in AD cases with comorbid LATE-NC. Immunohistological quantification of the percentage 
of p-tau202/205 positive neurons (tangles and pretangles) shows that p-tau pathology is significantly increased in AD(LATE-NC+), n = 55 compared 
to controls (n = 26) and AD(LATE-NC-) cases (n = 12) in the (a) CA1 subfield of the posterior hippocampus and compared to controls in (b) frontal 
cortex. Multiple linear regressions controlled for age and sex were used to compare the three neuropathological subgroups. Simple linear 
regressions in the whole cohort show that hippocampal pTDP-43 pathology is significantly associated with (c) hippocampal and (d) cortical p-tau 
pathology. Overview of p-tau202/205 immunostainings in the hippocampus and frontal cortex of a control, AD(LATE-NC-) and AD(LATE-NC+) case 
is shown in (e), 200 × magnification pictures and scale bars = 50µm. p-tau199 levels in sarkosyl-insoluble homogenates of the (f) entorhinal cortex 
or (g) frontal cortex of 10 controls, 8 AD(LATE-NC-), 11 AD(LATE-NC+) and 5 FTLD-TDP show that AD(LATE-NC +) cases have increased p-tau199 
in both regions compared to controls, AD(LATE-NC-) and FTLD-TDP cases. Physiological TDP-43 levels are significantly decreased in the entorhinal 
cortex of FTLD-TDP cases, compared to the AD groups (h). Levels of total TDP-43 are similar among groups in the frontal cortex (i). Multiple linear 
regressions were used to compare the three neuropathological subgroups. Spearman correlation analyses in the whole cohort including all 
variables analyzed is depicted in (j), coefficient values are displayed; blank cells mean coefficient value < 0.01
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The presence of LATE‑NC is associated with exacerbated 
tau seeding in a tau biosensor cell line
In order to functionally address the hypothesis that TDP-
43 aggravates p-tau pathogenesis, we performed seed-
ing assays using a previously established tau biosensor 
cell line [26]. The cell line was transfected with sarkosyl-
insoluble homogenates from the entorhinal and frontal 

cortices of 10 controls, 8 AD(LATE-NC-), 11 AD(LATE-
NC+) and 5 FTLD-TDP cases. The seeding efficiency 
of the different extracts as quantified as the number of 
fluorescent puncta (spots) per cell, which represent tau 
aggregates (Fig.  2a). Cells exposed to entorhinal cor-
tex extracts from AD(LATE-NC+), but not AD(LATE-
NC-), showed an augmented number of tau aggregates 

Fig. 2  The presence of LATE-NC associates with exacerbated tau seeding in vitro. A tau (P301S) biosensor cell line was transfected 
with sarkosyl-insoluble homogenates of entorhinal and frontal cortex from 5 controls, 8 AD(LATE-NC-), 11 AD(LATE-NC+) and 5 FTLD-TDP cases. 
After 48 h, the number of spots/cell (p-tau signal) were automatedly quantified (a). At a dilution of 1:20, cells treated with entorhinal cortex extracts 
from AD(LATE-NC+) cases showed increased p-tau seeding compared to FTLD-TDP and control-treated extracts (b). Similarly, cells transfected 
with frontal cortex homogenates from AD(LATE-NC+) cases display increased seeding compared to controls, AD(LATE-NC-) and FTLD-TDP treated 
cells (c). One-way ANOVA with Tuckey’s correction was used. Overview of each experimental condition is displayed in (d), scale bars = 50µm. 
Immunoprecipitation of pTDP-43 (S409/S410) from sarkosyl-insoluble homogenates shows a significant decrease of TDP-43 (350-414aa., 
ThermoFisher Scientific) and p-tau396/404 in the non-bound fractions (e). When cells are treated with pTDP-43-depleted fractions from 4 
controls, 2 AD(LATE-NC-) and 7 AD(LATE-NC+), p-tau seeding was significantly reduced in the AD(LATE-NC+) group, compared to cells treated 
with the corresponding non-depleted homogenate (f), Wilcoxon matched-pairs signed ranked test
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compared to cells treated with control-derived homogen-
ates (p < 0.0001, Fig. 2b, d and Suppl. Table 14, Additional 
file 1). Notably, when cells were transfected with frontal 
cortex extracts from AD(LATE-NC+), tau seeding was 
also significantly increased compared to AD (LATE-
NC-) (p < 0.0001) and to control-treated cells (p < 0.0001) 
(Fig. 2c-d, Suppl. Table 15, Additional file 1). Control and 
FTLD-TDP homogenates from both brain regions caused 
only marginal levels of tau seeding (Fig. 2b-c).

Because AD(LATE-NC+) cases show increased lev-
els of p-tau (Fig.  1f-g), we tested whether the exacer-
bated seeding effects with these homogenates were due 
to higher p-tau concentrations in these cases. To address 
this, we performed pTDP-43 immunoprecipitation 
assays with frontal cortex homogenates of 3 controls, 2 
AD(LATE-NC-) and 7 AD(LATE-NC+) cases. Here, we 
captured the pTDP-43 epitopes in the samples (Suppl. 
Figure 3a, Additional file 1), which were strongly reduced 
in the non-bound (i.e.: depleted) fraction (Fig.  2e). 
Importantly, p-tau was also captured when immunopre-
cipitating pTDP-43 (Suppl. Figure  3b, Additional file  1), 
hence p-tau levels were also reduced in the depleted frac-
tion of AD(LATE-NC+) cases (Fig.  2e). This suggests 
that the presence of TDP-43 is necessary to exacerbate 
tau seeding, probably by increasing p-tau levels through 
direct interaction and/or stabilization of the aggregates 
(Fig. 2e, Suppl. Figure 3a-b, Additional file 1). AD(LATE-
NC-) cases showed scant levels of p-tau biochemically 
before depletion (Fig. 2e). Finally, we performed a simi-
lar seeding assay as described previously to evaluate 
tau aggregation when cells are treated with the pTDP-
43-depleted samples, compared to their corresponding 
non-depleted extracts. For this, cells were simultaneously 
treated with both depleted and non-depleted extracts 
in the same experiment. We observed that when pTDP-
43 was depleted from the extracts, tau aggregation was 
significantly decreased (p = 0.0156, Wilcoxon matched-
pairs signed rank test) in AD(LATE-NC+), compared 
to the corresponding sarkosyl-insoluble samples, i.e.: 
non-depleted AD(LATE-NC+) (Fig.  2f ). The minor 
seeding effects observed previously with control and 
AD (LATE-NC-) homogenates were also diminished, 
although this was not significant (Fig.  2f ). Consistently, 
when treating the tau biosensor cell line with the same 
p-tau199 concentration (1ng), the seeding effects were 
similar among AD(LATE-NC-) and AD(LATE-NC+)-
treated cells, although cells treated with AD(LATE-NC+) 
showed slightly higher amounts of tau seeding, but this 
was not significant (Suppl. Figure  4). This suggests that 
the observed seeding effects are dependent of p-tau con-
centration. In turn, it suggests that the presence of TDP-
43 pathology impacts p-tau concentration, indirectly 
impacting tau seeding.

The presence of LATE‑NC is associated with worsened tau 
seeding in TDP‑43A315T mice
Next, we investigated the synergy between p-tau and 
TDP-43 in vivo. First, we analyzed the seeding potential 
of p-tau in TDP-43A315T transgenic mice, a model that 
exhibits ubiquitin-positive but TDP-43-negative inclu-
sions, accompanied by spinal motor neuron loss [45]. 
We performed hippocampal stereotactic injections of 
sarkosyl-insoluble, patient-derived extracts: 1 control, 
1 AD(LATE-NC-), 1 AD(LATE-NC+), 1 FTLD-TDP or 
PBS-vehicle. The histological and biochemical charac-
terization of the cases used for injections is depicted in 
Suppl. Figure 5b-d (Additional file 1) and in Tables 2, and 
3. The animals were injected at one year of age and sac-
rificed four months post-injection, which was followed 
by immunohistochemistry of all experimental groups 
with a p-tau202/205 antibody. We quantified the expan-
sion of p-tau seeds in the entire hippocampus, from ante-
rior to posterior hippocampus, displayed in percentage 
of p-tau positive sections (out of 12, designated as hAP 
score [44]), as well as the local severity, i.e.: the number 
of p-tau particles in a given “hotspot” section (Fig.  3a). 
We observed extracellular neuropil staining positive for 
p-tau in the central white matter band adjacent to the 
hippocampus, as well as in the corpus callosum in mice 
that received brain lysates from AD(LATE-NC-) and 
AD(LATE-NC+) cases, albeit without the presence of 
tau-positive neurons or NFTs (Fig. 3b, arrows). Animals 
injected with AD(LATE-NC-) and AD(LATE-NC+) 
lysates exhibited a higher hAP score when compared to 
control-injected mice in the ipsilateral (multiple linear 
regression, R2 = 0.64; p < 0.0001, Suppl. Tables  16–17, 
Additional file  1) but only the AD(LATE-NC+) group 
showed a difference relative to the control group in the 
contralateral hemisphere (R2 = 0.25, p = 0.0103, Suppl. 
Table 18, Additional file 1). FTLD-TDP and PBS-injected 
mice displayed no p-tau seeding (Fig. 3b) and were there-
fore not included in the analyses. Notably, when quan-
tifying the local p-tau severity, we found that animals 
injected with AD(LATE-NC+) extracts showed a higher 
number of p-tau-positive particles in both hemispheres 
compared to control lysate injected animals (ipsilateral: 
R2 = 0.39, p = 0.0007; contralateral: R2 = 0.26, p = 0.0120) 
and to AD (LATE-NC-)-injected animals (ipsilateral, 
p = 0.0163; contralateral, p = 0.0373) (Fig.  3d-e, Suppl. 
Tables 19–20, Additional file 1). These results show that 
AD(LATE-NC+) seeds may impact the severity, although 
not the propagation speed of p-tau aggregation.

TDP‑43 seeds do not aggregate, but promote its neuronal 
nuclear loss in TDP‑43A315T mice
We also investigated whether the injection of TDP-43 
seeds would trigger TDP-43 pathogenesis in TDP-43A315T 
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mice. For this, we analyzed all experimental groups 
with antibodies against pTDP-43 and non-phosphoryl-
ated TDP-43 (405-14aa). No cytoplasmic lesions were 
observed in either group (Suppl. Figure  6, Additional 
file  1), however nuclear loss of physiological TDP-43 
was apparent (Fig.  4a, arrowheads). We then quantified 
the percentage of neurons cleared for C-terminal TDP-
43 (representing nuclear loss) in the CA1-hippocampus 
and the motor cortex (ipsilateral) among experimental 

groups, with the addition of a non-injected group (n = 7). 
In the CA1 region, AD(LATE-NC+) injected animals dis-
played higher percentages of nuclear clearance compared 
to AD(LATE-NC-)-injected (p = 0.0080), control-injected 
(p = 0.0213), PBS-vehicle (p = 0.0393) and non-injected 
animals (p = 0.0059) (multiple linear regression, R2 = 0.24, 
Fig. 4b, Suppl. Table 21, Additional File 1). Similar results 
were observed in the motor cortex, where animals 
injected with AD(LATE-NC+) extracts exhibited more 

Fig. 3  The presence of LATE-NC is associated with p-tau seeding severity in TDP-43A315T mice. a Transgenic TDP-43A315T mice were stereotactically 
injected in the hippocampus at 1 year of age with human brain sarkosyl-insoluble homogenates of 1 aged control, n = 9; 1 AD(LATE-NC-), n = 10; 
1 AD(LATE-NC+), n = 9 and 1 FTLD-TDP case, n = 7 or with PBS, n = 7. Animals were sacrificed 4 months post-injection and their brains were 
histologically evaluated: the spread of p-tau seeding was evaluated in 12 hippocampal sections covering the whole hippocampus from anterior 
to posterior hippocampus (hAP score). Among these, a “hotspot” section was selected and the severity of p-tau aggregation was also quantified. 
b P-tau202/204 immunostaining of experimental groups displaying the central white matter band. Extracellular, neuropil p-tau seeds are visible 
in AD(LATE-NC-) and AD(LATE-NC+) -injected mice, being more pronounced in AD(LATE-NC+)-injected mice (arrows); scale bars = 500µm. 
c Quantification of the hAP score for each experimental groups; average percentages of positive sections (out of 12) are displayed. Animals 
injected with AD(LATE-NC-) and AD(LATE-NC+) extracts showed a significantly increased hAP score in the ipsilateral and contralateral compared 
to control-injected animals, pointing to a similar spread of p-tau seeds among both groups. Importantly, AD(LATE-NC+)-injected animals showed 
an increased number of p-tau202/205-positive particles (i.e.: seeding severity) compared to the AD(LATE-NC-) and control group, in the (d) 
ipsilateral as well as in the (e) contralateral. Multiple linear regressions (least squares) were performed to compare the hAP score and the number 
of p-tau particles among groups. The FTLD-TDP and PBS groups were excluded from both analyses as they showed no p-tau seeding
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TDP-43 nuclear loss compared to all remaining groups 
(0.0023 < p < 0.0461, R2 = 0.27, Fig.  4c, Suppl. Table  22, 
Additional file  1). Animals injected with FTLD-TDP 
homogenates also showed increased nuclear clearance 
in the hippocampus compared to non-injected animals, 
however this was not significant (Fig. 4c, Suppl. Table 23, 
Additional file 1).

We also investigated whether AD(LATE-NC+) seeds 
would impact neuronal loss in the mouse brain. For 
this, we quantified the number of neurons per mm2 
among the different experimental groups (Fig.  4 d-e). 
No relevant differences were observed, except between 
AD(LATE-NC+) and non-injected animals in the motor 

cortex (p = 0.0052, Suppl. Tables 24–25, Additional file 1), 
suggesting that the hippocampal injections, regardless of 
the injection material, played a minor role in the loss of 
neurons in TDP-43A315T mice.

Discussion
In this study, we investigated the impact of TDP-43 
pathology (i.e., LATE-NC) in AD, specifically on p-tau 
pathogenesis. For this, we studied human-post mortem, 
symptomatic AD cases without and with TDP-43 pathol-
ogy: AD(LATE-NC-) and AD(LATE-NC+), respectively, 
and we used in vitro and in vivo approaches to investigate 
the synergy between TDP-43 and p-tau on a functional 

Fig. 4  AD(LATE-NC+) seeds impact TDP-43 nuclear clearance in TDP-43A315T mice, but not neuronal loss. a Immunohistochemistry 
with anti- C-terminal TDP-43 (405-414aa.) of mouse experimental groups in CA1-hippocampus and motor cortex. A group of age-matched, 
non-injected animals was included in this analysis (n = 7). AD(LATE-NC+) injected mice display neurons cleared of TDP-43 (arrowheads), scale 
bars = 50µm. Quantification of the percentage of neurons cleared for C-t TDP-43 of all experimental mouse groups in (b) CA1-hippocampus 
and (c) motor cortex. AD(LATE-NC+)-injected animals exhibit higher percentages of nuclear TDP-43 clearance compared to all other groups 
except FTLD-TDP in the CA1 and to all groups in the motor cortex. Quantification of neuronal density (displayed in neurons/mm2) show no relevant 
differences in the (d) CA1 or (e) motor cortex. Multiple linear regressions (least squares) were performed to compare TDP-43 nuclear clearance 
and neuronal density among groups
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level. Our findings extend the current literature suggest-
ing synergistic effects between TDP-43 and tau patholo-
gies by demonstrating that TDP-43 worsens p-tau 
pathology, resulting in increased p-tau seeding potential.

Specifically, we report that AD(LATE-NC+) cases 
exhibit higher burdens, as well as higher brain levels of 
p-tau. We also show that the presence of TDP-43 asso-
ciates with exacerbated p-tau seeding potential in a tau 
biosensor cell line, probably by increasing p-tau concen-
tration via direct interaction. Importantly, the injection of 
AD(LATE-NC+) homogenates in TDP-43A315T mice trig-
gered a more severe p-tau seeding and increased nuclear 
clearance of physiological TDP-43, compared to animals 
that received AD(LATE-NC-) and control extracts.

Recently, we have shown that TDP-43 and p-tau 
physically interact during the progression of AD [15], 
and that hippocampal p-tau pathology is increased 
in AD(LATE-NC+) [10]. Moreover, higher tau bur-
dens and higher Braak NFT stages have been observed 
in AD(LATE-NC+) cases [3]. Consistently, another 
recent study has shown that the absence of LATE-NC 
in AD is associated with resilience and resistance to 
AD pathology [46]. Indeed, an accumulating body of 
evidence has shown that the co-occurrence of LATE-
NC and AD is associated with increased hippocampal 
atrophy and worse dementia outcomes compared to 
AD(LATE-NC-), i.e., pure AD [6, 9, 46–48], suggesting 
that the presence of LATE-NC may lower the thresh-
old for developing clinical symptoms [49]. Here, we 
speculate that the co-accumulation of TDP-43 aggra-
vates tau pathology, thereby worsening neurodegener-
ation and ultimately leading to a more severe cognitive 
decline.

TDP-43 and tau aggregates are well known to co-
localize in brains with ADNC [11, 15, 16, 50, 51], and 
we recently suggested that these pathologies seem to 
increase in parallel in tau aggregate maturation during 
the progression of AD [52]. Moreover, several studies 
have highlighted synergistic effects between these pro-
teins on a molecular level, contributing to neurodegen-
eration and cell loss. On the one hand, TDP-43 promotes 
tau mRNA instability and suppresses physiological tau 
expression [45]. On the other, it has been observed that 
TDP-43 shifts the ratio of tau repeats by regulating tau 
mRNA splicing in cell and mouse models [45]. Another 
study has found that tau tubulin kinases (TTBK1 and 
TTBK2), which are known to phosphorylate tau in AD, 
also phosphorylate and co-localize with TDP-43 in FTLD 
cases and other animal models [53]. Additionally, both 
tau and TDP-43 have been implicated in the disruption 
of nuclear-cytoplasmic transport in AD and ALS and 
FTLD, respectively [54, 55], therefore it is possible that 
these proteins are involved in this mechanism in cases 

with both ADNC and LATE-NC. Finally, recent studies 
have shown that TDP-43 promotes p-tau accumulation 
and tau-driven neurotoxicity in an animal model [18] and 
that TDP-43 may serve as a templating agent to stabilize 
tau aggregates [56]. On the other hand, tau seems to play 
a less robust role in modulating TDP-43 aggregation and 
toxicity [18]. Taken together, these data point to a biolog-
ical link between tau and TDP-43, which seem to share 
a common pathological cascade, probably also sharing 
genetic pleiotropy, i.e.: APOE ε4 [9, 13, 57], even though 
the molecular underpinnings of this synergy are not yet 
fully understood.

In this study, we show that AD(LATE-NC+) cases show 
higher p-tau burdens (tangles and pretangles) as well as 
increased p-tau199 levels compared to AD(LATE-NC-) 
cases in the entorhinal and frontal cortices. Interest-
ingly, the levels of physiological TDP-43 were decreased 
in the entorhinal cortex of FTLD-TDP cases compared 
to AD(LATE-NC-), AD(LATE-NC+) and controls. We 
postulate that this points to the loss of function of physi-
ological TDP-43 in these cases, which has been reported 
in other models [58, 59] and is likely associated with neu-
ronal death.

Because AD(LATE-NC+) cases also have higher 
p-tau concentrations, it was not unexpected that the 
p-tau seeding observed in cells and animals treated with 
AD(LATE-NC+) extracts was also exacerbated. Indeed, 
when treating cells with similar p-tau concentrations, the 
seeding effects were similar. However, after immunopre-
cipitating pTDP-43 and treating the tau biosensor cell 
line with pTDP-depleted sarkosyl-insoluble homogenates 
from AD(LATE-NC+) cases, p-tau seeding decreased 
dramatically. This suggests that the presence of TDP-43 
is linked and somewhat necessary to the acceleration of 
p-tau seeding. We hypothesize that TDP-43 may help 
increasing p-tau concentration in the brain, indirectly 
facilitating tau-driven seeding.

The anatomical spread and propagation speed of p-tau 
seeds in the entire mouse hippocampus (hAP score) was 
similar upon the injection of both AD(LATE-NC-) and 
AD(LATE-NC+) extracts. However, animals injected 
with AD(LATE-NC+) material exhibited a more severe 
local p-tau seeding, compared to animals injected with 
AD (LATE-NC-) homogenates. This observation suggests 
that TDP-43 pathology is more important for increasing 
local p-tau severity, rather than promoting the spatial 
spreading of tau aggregates. Accordingly, even though 
TDP-43 distribution in the AD brain seems to recapitu-
late that of tau [25], it is likely that TDP-43 proteinopa-
thy in AD accumulates after tau pathology is established, 
exacerbating its severity and leading to increased neu-
ronal loss and faster rates of hippocampal atrophy [10, 
47]. For these reasons, we postulate that the synergy 
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between tau and TDP-43 may be more relevant in the 
limbic-predominant and typical subtypes of AD [60], as 
TDP-43 aggregates rarely spread to the cortical areas in 
AD [5, 25].

Unexpectedly, we observed no pretangles, NFTs or dys-
trophic neurites on the injection site, i.e.: hippocampus, 
or neighboring areas. One reason for this might be the 
fact that these mice were analyzed four months post-
injection, which could mean that tau aggregates could 
require a longer period to form in the mouse brain. 
Accordingly, another study has investigated the seeding 
potential of AD-derived tau seeds in non-transgenic mice 
in order to recapitulate sporadic AD, which only signifi-
cantly increased tau seeding nine months post-injection 
[61]. Moreover, other tau species such as soluble mono-
mers and oligomers, but not sarkosyl-insoluble tau spe-
cies, could be more prone to cause tau seeding and 
spreading [62, 63].

Although we did not observe the presence of TDP-43 
aggregates in TDP-43A315T mice even four months after 
injection of human seeds, there was an augmented loss 
of physiological nuclear TDP-43. Indeed, several TDP-
43 mouse models do not display aggregated TDP-43, 
despite the presence of symptoms at time of death as well 
as neurodegeneration signs post-mortem [64–68]. This 
suggests that aggregate formation might not be neces-
sary to initiate TDP-43-driven neurodegeneration, and 
that it could rather result from the loss of physiological, 
nuclear TDP-43. Accordingly, we report that the injec-
tion of AD(LATE-NC+) homogenates promoted a sig-
nificant increase in the number of neurons cleared for 
nuclear TDP-43 in the hippocampus and motor cortex 
of TDP-43A315T mice. The loss of TDP-43 function from 
the nucleus upon a stressful and/or pathological stimu-
lus has been previously reported in the literature as a 
possible mechanism for TDP-43 pathogenesis [4, 58]. 
We and others have hypothesized that this could possi-
bly represent an early step in disease pathogenesis where 
TDP-43 aggregates are a pathological hallmark, i.e.: ALS/
FTLD spectrum and AD [69–71]. Moreover, nuclear loss 
of TDP-43 has been previously detected in this model, 
being occasionally present in neurons with ubiquitin-
positive but TDP-43-negative lesions [39]. Our results 
further suggest that the loss of TDP-43 occurs before the 
appearance of abnormal TDP-43 lesions. The data also 
indicate that the loss of nuclear TDP-43 occurs before 
neuronal cell death, as we found no significant differences 
in neuronal loss in the motor cortex between the experi-
mental groups. Consistently, we and others have previ-
ously observed neuronal loss in spinal cord and motor 
cortex of late-stage TDP-43A315T mice [39, 64]. Neverthe-
less, novel models that recapitulate both tau and LATE-
NC proteinopathies will be crucial to further elucidate 

tau and TDP-43 pathogeneses and synergistic effects 
in vivo, as well as determine how TDP-43 enhances tau 
pathology, or vice versa [8]. Studies addressing the patho-
logical interplay between Aβ, tau and TDP-43 will also be 
of interest.

A confounding factor that may also influence patho-
genesis, seeding and the clinical phenotype in AD(LATE-
NC+) cases is the presence of additional co-pathologies, 
such as α-synuclein. Importantly, both p-tau and TDP-
43 were shown to co-localize with α-synuclein in AD 
[72, 73], therefore it is likely that this binding partner 
also contributes synergistically to exacerbating AD. In 
our cohort, the mean Braak LBD stage among both AD 
groups was similar, with AD(LATE-NC+) cases showing 
a slightly higher mean (1.4) compared to AD(LATE-NC-) 
cases (0.25), so it is likely that α-synuclein plays only a 
minor role in exacerbating p-tau pathology in AD.

One limitation of this study is the low number of AD 
(LATE-NC-) cases in our cohort, i.e., without any detect-
able LATE-NC. This is probably due to stringent criteria 
employed in our study to group the cases, as we con-
sidered a case positive for LATE-NC if a single TDP-43 
lesion was found in one or more of the following regions: 
amygdala, posterior hippocampus, and middle-frontal 
cortex. Additionally, this can also be explained due to the 
use of a hospital-based cohort, which can be enriched 
for co-pathologies [74]. However, the purpose of this 
study was to address the differences in p-tau pathology 
in demented individuals and to perform functional stud-
ies using patient-derived material. Another limitation is 
that this study focused on the “younger-old”, especially 
the controls, with a mean age of 64.7. This was probably 
because hospital-based cohorts tend to have younger 
ages at death. Additionally, the criteria for selecting 
controls included the absence of Aβ plaques (Aβ phase 
0), excluding a high number of cases with advanced age 
[75]. This may limit the interpretation to the general 
population.

Additionally, the mouse model used in this study does 
not necessarily recapitulate TDP-43 pathology occurring 
in AD, as LATE-NC models are not yet available. A final 
limitation is the fact that the impact of Aβ pathology on 
tau and TDP-43 pathologies was not investigated in this 
study. However, there were no significant differences in 
Aβ phases among AD cases (Table 1), so we believe that 
it’s unlikely that Aβ plays a major role in TDP-43/tau 
synergy.

Despite these limitations, we demonstrated that the 
presence of TDP-43 pathology is associated with wors-
ened AD-related tau pathology in the human AD brain 
and in two different models with a tau or a TDP-43 back-
ground. Further, we showed that in the absence of pTDP-
43, p-tau expression was decreased, as well as p-tau 
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seeding. Future experimental studies should focus on 
preventing this interaction and investigate the impact of 
p-tau and TDP-43 proteinopathies on cognition.

TDP-43 pathology, i.e., LATE-NC is known to occur in 
brains with little or no ADNC [7, 76]. Consistently, pure 
AD cases are also common, although such cases seem 
to present lower levels of AD pathology [46] and dis-
ease severity, when compared to AD cases with LATE-
NC [3, 48]. Of note, the co-occurrence of TDP-43 and 
tau pathologies is not unique to AD, occurring also in 
primary age-related tauopathy (PART) and FTLD-TDP 
cases [42, 77–79], however this synergy appears to play 
a much more relevant role in AD. Because LATE-NC co-
occurs in most clinical AD cases alongside Aβ plaques 
and tau NFTs [3, 7] (Fig. 5), this study has an impact in 
the understanding of TDP-43 pathogenesis in AD and 
LATE, which account for the majority of dementia cases 
worldwide [2, 6, 80].

Conclusions
Taken together, our findings extend the current knowl-
edge suggesting an association between TDP-43 and tau 
pathologies, by demonstrating their functional synergy, 
resulting in increased p-tau seeding potential. Moreo-
ver, this study stresses the relevance of comorbidities 
that contribute to dementia, which are more often the 
rule than the exception [82, 83]. Our results further high-
light that AD patients with comorbid LATE-NC should 
be distinguished in a clinical setting, as the treatment 
required for these patients might differ from that of pure 
AD [8], especially when targeting tau. Thus, these data 
urge for the development of biomarkers that detect TDP-
43 pathology during life, in order to properly stratify 
demented individuals with co-morbid LATE-NC.
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