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Abstract 

The AAA​+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells 
of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis 
under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP 
for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional 
organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line 
with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The 
intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. 
Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type 
specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate 
disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the lat-
est insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some 
of the most devastating forms of neurodegeneration.
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Background
Proteostasis and Protein Aggregation
Protein homeostasis, also known as proteostasis, is 
achieved through the coordination of protein synthesis, 
folding, posttranslational modification, and degradation. 
These activities require an intricate network of pathways 
and regulators that control proteostasis at the cell, organ, 
and organismal levels [1, 2].

Proteins fold in an environment with a  high risk of 
inappropriate molecular interactions that promote 

aggregation [2, 3]. Molecular chaperones (here referred 
to as chaperones) and their co-chaperones cooperate 
to fold and maintain the functional state of individual 
proteins and higher order complexes; they also target 
proteins to degradation [2, 4]. Stress, the production of 
toxic proteins, or degradation overload can disrupt the 
proteostasis network [5]. The loss of proteostasis accel-
erates aging, compromises organismal health, and may 
culminate in cell death [2–4, 6]. Moreover, the derail-
ment of proteostasis causes or aggravates human diseases 
and disorders [4, 7, 8]. Many neurodegenerative diseases 
are characterized by the aggregation of polypeptides and 
the formation of granules or inclusions [5, 6]. Patho-
logical aggregates commonly form when misfolded pro-
teins accumulate. While aggregates can be toxic, not all 
granules are harmful. Notably, ribonucleoprotein (RNP) 
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assemblies are crucial hubs to regulate cellular homeo-
stasis. Their organization and function are controlled by 
a process known as granulostasis [9]. As discussed below, 
valosin containing protein (VCP, also called p97 in mam-
mals) is directly involved in numerous cellular activities 
that ensure proteostasis.

Main text
Valosin‑containing protein, VCP
The chaperone VCP is a type II ATPase associated with 
diverse cellular activities (AAA​+ ATPase, Fig.  1a). In 
humans, the major product of VCP gene expression is a 

protein of 806 amino acid residues and apparent molec-
ular mass of 90  kDa. VCP is evolutionarily conserved; 
homologs have been identified in yeasts (Cdc48), worms 
(CDC-48), and flies (TER94, transitional endoplasmic 
reticulum ATPase) [10]. VCP serves as an integral part of 
a larger network that is dedicated to establishing and pre-
serving proteostasis [11, 12].

Work with Saccharomyces cerevisiae was instrumental 
to uncover the biology of VCP. In budding yeast, CDC48 
is an essential gene [15, 16]. Under non-permissive con-
ditions, conditional mutants display diverse phenotypes 
[17–20]. They include cell cycle arrest, dysfunctional 

Fig. 1  VCP protein organization and cellular interactions. a VCP domain organization and homohexamer formation. See text and [13] for details. 
b The STRING network of high confidence interactions (minimum score 0.70) of human VCP is depicted. The interactors are limited to the physical 
subnetwork [14]. The subnetwork includes many of the proteins that serve as VCP cofactors. c VCP-cofactor complexes (illustrated with cofactors 
that contain UBX-L, UBX, or PUB domains) regulate a vast number of cell-autonomous functions. VCP mutations may derail these activities. The 
cell-non-autonomous functions of VCP are beginning to emerge
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ubiquitin-dependent proteolysis, impaired ER membrane 
fusion and ERAD, abnormal cell morphology, aberrant 
spindles, aggregation of mitochondria, altered sensitivity 
to oxidative stress, and changes in the metabolome [21, 
22]. By contrast, CDC48 overexpression causes aberrant 
cell cycle progression in the G2 phase and enhances the 
toxicity of polyQ-expanded huntingtin polypeptides [23].

Mammalian VCP is an abundant chaperone which 
amounts to ~ 1% of the total protein in HEK293T cells. It 
promotes the extraction of ubiquitinated proteins from 
larger complexes for subsequent recycling or degrada-
tion. Furthermore, VCP contributes to additional pro-
cesses that support cellular homeostasis and are often 
directly relevant to human health. To accomplish such 
diverse tasks, VCP associates with a wide variety of 

Table 1  Cellular functions associated with the ATPase VCP. Examples of cofactors that have been linked to specific cellular activities 
are listed. Components that are part of the UPS and autophagy network were collected from the BioGrid database [12]. Additional 
references are listed in the table. Most of the complex components interact with VCP directly. However, this has not always been 
established, and VCP association may be mediated by a protein that is part of a complex. Alternative protein identifiers used in original 
publications are shown in brackets

VCP-related functions VCP complex component

ERAD UFD1–NPL4, UBXD8, ATXN3, GP78/AMFR, SVIP, VIMP (SELS, SELENOS), SELK, 
UBX2 (SEL1), HRD1 (SYVN1, DERL3), DERL2, DERL1, NGLY1, UBXN1 (SAKS1), 
UBXN4 (UBXD2, erasin), RNF103 (KF1), TRIM13 (RFP2), UBXN6 (UBXD1), 
RHBDL4, RNF19A (Dorfin) [27–44]

Control of protein translocation into the ER ZFAND2B (AIRAPL) [45]

Ubiquitin–proteasome system (UPS) p47 (NSFL1C), RNF45, UFD1, ATXN3, NPL4, FAF1, VIMP, DERL1, FAF20, SYVN1, 
UBXN1. UBE4B, UBXN7, SPRTN, VCPIP1, YOD1, PLAA, SIK2, SVIP, UBC, PARK2, 
RNF31, BAG6, BRCA1, FBXW1, COPS5, Cul1, DERL2, UBQLN1, ZFAND2B, 
ANKRD13A, UBQLN2, USP13 [12]

General autophagy, mitophagy UFD1–NPL4, PARK2, PINK1, MFN (mitofusin), OPTN (optineurin, FIP2), 
UBQLN2, USP13, UBXN1, WIPI2, WASHC4/SWIP [12, 46–49]

Mitochondria-associated degradation (MAD); mitochondrial protein trans-
location associated degradation (mitoTAD)

UFD1-NPL4, PLAA (UFD3/DOA1), UBXD8 (FAF2), ANKZF1 (VMS1), UBXD1 
(UBXN6) [50–52]

Mitochondrial membrane fusion MFN [50]

Mitochondria-ER contacts VPS13D, UBXD8 [53, 54]

Protein trafficking; mitochondria → peroxisomes MITOL (March5) [55]

Ribosome QC, ribophagy, damaged rRNA recognition ANKZF1 (VMS1), UFD1-NPL4, UFD3, ribosome quality control complex 
(yeast: Rqc1p-Rkr1p-Tae2p-Cdc48p-Npl4p-Ufd1p) [12, 27, 56–58]

ER to Golgi trafficking; Golgi-ER membrane reassembly, ribosome-ER 
contacts

SVIP, p47 (NSFL1C), UFD1-NPL4, UBXN2B (p37), STX5A (syntaxin), VCIP135 
[59–63]

Lysosome function and clearance, endolysosomal protein sorting UBXD1 (UBXN6), PLAA, YOD1, SVIP [64–66]

Stress response, stress signaling, transcriptional stress UFD1-NPL4, BAG1, MEST (mesoderm specific transcript), SMY2 (GIGYF1/2) 
[27, 67–72]

Stress granule assembly UFD1L, PLAA [73]

Granulophagy UBXD8 (UBX2), UFD1–NPL4 [27]

Stress granule disassembly FAF2 (UBXD8, UBXN3B), ZFAND1 [74, 75]

Protein inclusions RNF19A (Dorfin), TRIM21 [76, 77]

Replication UFD1-NPL4-FAF1, TEX264 [78–80]

Transcription RHBDL4, GP78 [43]

Accumulation of ubiquitinated proteins in nuclear blebs UBXD1 (UBXN6) [81]

DNA damage repair UFD1-NPL4, DOA1, MRE11-RAD50-NBS1, TEX264 [80, 82–86]

Dendritic spine formation NF1 (neurofibromin), ATL1 [59, 87, 88]

Lipid droplet formation and turnover UBXD8, SVIP [54, 89, 90]

Regeneration of free monoubiquitin; ubiquitin homeostasis UFD1-NPL4 [91]

Ciliogenesis UBXN10 (UBXD3) [11]

Apoptosis UBXD8, SMY2 (GIGYF1/2) [54, 72]

Anti-viral immune responses UFD1-NPL4, RIG-1/DDX58 [92]

Other processes HIV disease progression [93], cancer biomarker [94, 95]
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cofactors and other binding partners ([12, 24, 25], Fig. 1b, 
Table 1). Cofactors are defined as proteins with motifs or 
domains that directly bind the ATPase [26]. Cofactors 
with a ubiquitin-binding domain that recognizes ubiquit-
inated clients are classified as ubiquitin adaptors [27].

VCP assembles into a barrel-shaped homohexamer 
with six-fold radial symmetry [96–99]. The monomeric 
protein consists of an N-terminal domain (here called 
N-domain), followed by two ATPase domains (D1 and 
D2), and a short C-terminal tail ([13], Fig. 1a). The flexi-
ble N-terminal segment contributes to substrate selection 
by interacting with ubiquitin either directly or indirectly 
through cofactors [100]. The cofactors often bind ubiqui-
tin with high affinity [101], which enhances the recruit-
ment of substrates to VCP. The AAA​+ motor domains 
D1 and D2 form a double-ring or barrel structure. The 
C-terminal tail also interacts with cofactors and contains 
a low complexity region ([101–105], Fig.  1a). Outside 
of the N-terminal and C-terminal VCP segments, the 
chaperone associates with non-canonical cofactors. For 
instance, neurofibromin 1 binds the ATPase domains of 
VCP [50]. VCP-cofactors form higher molecular com-
plexes that are directly relevant to human health. Specific 
links between VCP-complexes have been established or 
predicted for neurodegeneration in general [106–108], 
amyotrophic lateral sclerosis (ALS [109–111]), Parkin-
son’s disease (PD [55, 112–115]), Alzheimer’s disease 
(AD [112, 116–119]), Huntington’s disease (HD [91, 
120–122]) and others. Moreover, animal models support 
a role for VCP in fear memory and social behavior [59]. 
VCP affects additional health conditions that are not dis-
cussed here, such as HIV (disease progression [93, 123]) 
and cancer (disease biomarker [94, 95]).

Biochemical properties of VCP
VCP ATPase activity
The chaperone function of VCP depends on its ATPase 
activity. Both ATPase domains of VCP (D1 and D2; 
Fig.  1a) include a Walker A and Walker B motif, which 
bind and hydrolyze ATP [30, 124]. ATP-binding to D1 
promotes the assembly of VCP into its functional hexa-
meric form [125]. As D1 has only low basal ATPase 
activity, the overall ATPase activity of VCP is provided 
by D2 [94, 126]. ATP hydrolysis drives major conforma-
tional changes in the D2-domain. It generates the force 
to segregate or unfold client proteins and their ubiqui-
tin chains. Client unfolding and release are initiated by 
threading through the central opening of the VCP hex-
amer [94, 127–131]. On the other hand, distal ubiquitin 
chains may move through the lateral openings of the 
VCP hexamer [131]. Both the N-terminal domain and 
C-terminal tail modulate the VCP ATPase activity. This is 

achieved through cofactor binding and posttranslational 
modifications (PTMs) [127].

Subcellular distribution
VCP is present in different subcellular locations [132–
134]. VCP’s functions are required in the nucleus and 
cytoplasm, and the ATPase shuttles between both com-
partments. A nuclear localization sequence (NLS) in 
the N-terminal domain of VCP (amino acid residues 60 
to 66) promotes nuclear import [135]. Interestingly, the 
NLS is embedded in a region that binds various cofactors 
(see below), pointing to the possibility that cofactor inter-
action modulates VCP nuclear import. The C-terminal 
tail also impinges on the nucleocytoplasmic distribution 
of VCP [136], but the role of the C-terminal portion for 
nucleocytoplasmic transport is not fully understood. 
Nevertheless, the cell cycle-dependent phosphorylation 
of a tyrosine residue near the C-terminus correlates with 
the nuclear accumulation of yeast Cdc48 [137]. To our 
knowledge, no hydrophobic nuclear export signal recog-
nized by Crm1 has been demarcated for VCP so far. VCP 
cysteine palmitoylation (Table 2) may support its associa-
tion with membranes [127, 138].

VCP posttranslational modifications (PTM)
VCP can be modified on multiple sites. Ubiquitination, 
acetylation, phosphorylation, palmitoylation, methyla-
tion, SUMOylation, and other modifications amount to 
at least 170 PTMs [127, 139]. A “combinatorial code” 
of PTMs [127] likely determines the functional con-
sequences of a particular modification pattern. PTMs 
regulate the VCP ATPase activity, interactions with 
cofactors, client specificity, subcellular localization, and 
other parameters (Table  2, Fig. S1). For example, the 
VCP ATPase activity is increased upon phosphorylation 
of S770, but reduced by C522 S-glutathionylation [142, 
145]. SUMOylation regulates critical aspects of VCP 
biology, such as hexamer formation, and the localization 
to nuclei or stress granules [140].

The multifaceted contributions of VCP to cell biology
VCP is involved in numerous cellular processes, and 
the full spectrum of VCP-related functions continues 
to emerge [146]. Best characterized are VCP’s segregase 
activity and its role in the targeting of proteins to degra-
dation. Both processes make fundamental contributions 
to cellular homeostasis. Especially relevant to neuronal 
health is the removal of aberrant proteins, organelles, and 
granular compartments [147, 148]. Cofactor(s) and the 
subcellular location of VCP-cofactor complexes deter-
mine the substrate specificity and consequences of VCP-
dependent interactions. The following sections discuss in 
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Table 2  PTMs impact VCP-dependent biological activities. Information on VCP modifications was provided by PhosphoSitePlus [139] 
and the sources listed in the table. The table shows PTMs of residues located in regions that are relevant to the processes discussed in 
this review. PhosphoSitePlus [139] provides comprehensive information on all PTMs. Residues that are part of cofactor binding sites are 
in green. These sites are present in the N-terminal domain (residues 1–208; specifically Nn: 24–104; Nc: 113–184) and the C-terminal 
tail (residues 764–806). The nuclear localization sequence (NLS) encompasses residues 60 to 66 [135], underlined in the table. Cellular 
functions controlled by multiple PTMs are grouped together. Residues relevant to stress granule biogenesis are in red. M3, tri-
methylation; phospho, phosphorylation; SUMO, sumoylation. NA denotes consequences of the PTMs that are not fully understood. See 
Fig. S1 for a comprehensive depiction of the PTMs that were identified for VCP

Reference: [78, 82, 127, 138, 140–144]
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detail how VCP complexes contribute to specific cellular 
activities.

VCP protein complexes
In most cases, VCP clients initially bind to cofactors 
which are linked to specific VCP activities (Table  1). 
Different VCP complexes have been connected to 
particular VCP functions in humans and rodents 
(Table S1). The properties and subcellular distribu-
tion of cofactors differ widely, and some cofactor-VCP 
interactions are cell type-specific [149, 150]. Never-
theless, a set of general features applies to these asso-
ciations. The major contact sites in the N-domain 
(residues 1–208, Fig.  2) are located in two segments 
(Nn: 24–104; Nc: 113–184). Ubiquitin regulatory X 
(UBX)/UBX-L (UBX-like) domain, VCP-interacting 
motif (VIM), VBM (VCP-binding motif ), or SHP (BS1, 
binding segment) promote binding to the N-domain 
[127]. Most cofactors interact with the N-terminal 
segment in a highly dynamic fashion [149]. A limited 
number of VCP cofactors associate with the C-termi-
nal VCP tail (residues 764–806). PUB (PNGase/UBA 
or UBX containing proteins) and PUL (PLAP, Ufd3p, 
and Lub1p) domains facilitate these interactions [103–
105, 127]. Cofactors bind VCP as monomers or heter-
odimers, as exemplified by the UFD1-NPL4 dimer.

Cofactors may inhibit or stimulate the ATPase activ-
ity of VCP; prominent examples are p47 (NSFL1C) and 
p37 (UBXN2B) [153]. Notably, the response to p47 and 
p37 binding is dysregulated for disease-relevant VCP 
mutants [153].

VCP hexamers can associate with different cofac-
tors at the same time. However, some cofactor combi-
nations are mutually exclusive [127]. As such, binding 
of UBX domains (examples: UBXN7, UBXN8) will 
preclude the interaction with VIM motifs (present in 
AMFR and SELENOS) [154]. Table S2 provides more 
detailed information on major VCP binding partners, 
including the relevant pathways, protein and transcript 
abundance.

Pharmacological VCP ATPase inhibitors can 
strengthen or reduce the cofactor interactions. How-
ever, this does not apply to all cofactors, as some bind 
independently of VCP activity [149]. Interestingly, the 

association with VCP can determine cofactor stabil-
ity and thereby the cellular activities that rely on these 
cofactors.

Protein degradation, organelle and granule removal
Proteolysis limits the harmful accumulation of aggre-
gated proteins [2]. The ubiquitin–proteasome system 
(UPS) and the autophagy-lysosomal pathway (ALP) 
are the major routes of intracellular protein degrada-
tion [155]. UPS efficiently degrades individual proteins, 
while ALP eliminates large protein complexes and 
organelles [156].

Proteasomes recognize and degrade ubiquitinated cli-
ents in the cytoplasm and nucleus [157]. They also par-
ticipate in endoplasmic reticulum associated degradation 
(ERAD) [155], ribosome-associated protein quality con-
trol (RQC) [56], and mitochondria-associated degrada-
tion (MAD) [50].

In mammalian cells, macroautophagy, microau-
tophagy, and chaperone-mediated autophagy con-
clude with lysosomal degradation [155]. Dysfunctional 
organelles are removed by selective autophagy, which 
eliminates defective mitochondria (mitophagy), lys-
osomes (lysophagy), ER (reticulophagy), peroxisomes 
(pexophagy), and portions of the nucleus (nucleoph-
agy) [158]. Granulophagy, another specialized form of 
autophagy, clears non-membrane bound compartments, 
such as stress granules [159].

VCP controls protein degradation on multiple levels 
[107, 141, 158, 160, 161]. First, in cooperation with cofac-
tors, VCP targets ubiquitinated clients to the proteas-
ome. Second, VCP controls several steps of autophagy to 
ensure the proper balance between repair and removal of 
damaged organelles [158, 162–164]. Third, VCP regulates 
granulostasis, thereby preventing the formation and dis-
persal of permanent protein aggregates. This is relevant 
to the nervous system, as lysophagy is triggered by neu-
rotoxic aggregates to limit their spread in vitro [159, 162].

The dynamic interplay between VCP and other com-
ponents of the proteostasis network adds further com-
plexity to the control of proteostasis. For example, the 
E3 ubiquitin protein ligase CHIP and VCP bind mutant 
superoxide dismutase 1 (SOD1G93A) [165]; both regulate 
SOD1G93A proteolysis. SOD1G93A degradation relies on 

Fig. 2  VCP regions, interaction sites, PTMs, and variants. a The domain organization, regions relevant to aggregation and interactions 
(amyloidogenic, low complexity, major sites for cofactor interaction), subcellular targeting (nuclear localization sequence, NLS), and PTMs 
with known impact on VCP localization or function are depicted. Sm, sumoylation; M3, tri-methylation; Ac, acetylation. b Likely disease-associated 
variants (neurodegeneration and other conditions) are depicted; they have been curated from ClinVar (NIH). The variants are linked to different 
diseases and disorders, such as neurodegeneration and cancer. c VCP variants linked to disease (red), with predicted consequences (blue), likely 
benign (light green), or with uncertain outcomes (dark green) are shown. The distribution of mutations appears on top of the table. b, c The variant 
amino acid residue is shown at the margins in the one letter code. * indicates nonsense mutations. The figure has been generated with information 
from multiple sources [135, 138, 139, 151, 152]

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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the collaboration of CHIP, hsp70, the hsp70 co-chap-
erone Bag-1, S6/S6’ (AAA​+ ATPases in the 19S regula-
tory subunit of the proteasome), and VCP [165]. Bag-1 
enables the formation of a ternary CHIP/Bag-1/VCP 
complex [165]. This may involve two Bag-1 binding 
sites in the D1 domain of VCP [70]. The importance of 
the Bag-1/VCP interaction goes beyond the removal of 
SOD1G93A. Bag-1 also regulates ERAD, at least for some 
VCP clients [70]. Taken together, CHIP and Bag-1 illus-
trate the intricate connections between VCP and other 
pillars of the intracellular proteostasis network. The com-
munication among these factors may facilitate alternative 
routes to protein degradation and serve as a safety net to 
handle misfolded clients.

ER, ERAD
VCP controls ER morphogenesis [88] and ERAD [166]. 
Several VCP binding proteins, such as p47 (NSFL1C) 
and Atlastin-1, are implicated in the biogenesis of the ER 
network [167]. The knockdown of VCP or cofactor genes 
and the overexpression of pathogenic VCP mutants derail 
ER homeostasis in the nervous system [59, 88, 168]. 
These conditions reduce the extension of the ER into 
dendrites, both in cultured neurons and in mouse brains. 
Ultimately, this impairs proper dendritic spine formation.

During ERAD, VCP associates with ubiquitin ligases 
located at the ER [169] and extracts misfolded pro-
teins, commonly with the assistance of UFD1-NPL4 
(Table  1). The association of VCP with the ER is, at 
least in part, supported by gp78 [170]. The traffick-
ing control of GABAA receptors and the myelination 
of axons demonstrate the importance of ERAD in the 
nervous system [171].

Mitochondrial membrane fusion, mitophagy, 
mitochondria‑associated degradation
Mitochondria control several branches of cell metabo-
lism, calcium homeostasis, and cell intrinsic routes of 
apoptosis [172]. Mitochondrial homeostasis depends 
on fusion and fission, import of nuclear-encoded pro-
teins from the cytoplasm, and removal of dysfunctional 
organelles. VCP regulates mitochondrial performance 
on multiple levels. The ATPase modulates (i) mitochon-
drial fusion, (ii) mitophagy, (iii) mitochondria-associated 
degradation (MAD), including mitochondrial protein 
translocation associated degradation (mitoTAD), (iv) 
mitochondrial calcium uptake, and (v) cell death [46, 50, 
56, 173]. VCP affects these events through ubiquitin-
dependent and ubiquitin-independent activities.

Mitochondrial abnormalities linked to mutant VCP 
include elevated reactive oxygen species (ROS) levels, 
mitochondrial uncoupling, reduced ATP production, 

mitochondrial fusion defects, and impaired clearance of 
damaged mitochondria [50, 114, 173, 174]. Loss of mito-
chondrial quality accompanies aging and neurodegenera-
tive disorders, such as ALS, PD, and HD [172].

Ribosome‑associated protein quality control (RQC)
Quality control of de novo synthesized proteins is needed 
to maintain a functional proteome [175, 176]. (The qual-
ity control of ribosome biogenesis is not discussed here; 
the subject has been reviewed recently [177].) RQC takes 
place at every step of translation; it regulates transla-
tion initiation, elongation, termination, and the recy-
cling of ribosomal subunits [175]. Major tasks of RQC 
are the resolution of stalled or collided ribosomes and 
the removal of aberrant nascent peptides. For RQC-
mediated nascent polypeptide degradation, VCP and 
other key regulators are recruited to the 60S ribosomal 
subunit [56, 57]. UFD1-NPL4 and ANKZF1 (VMS1) are 
major VCP cofactors that participate in RQC [56, 57]. 
For instance, ANKZF1 (VMS1) promotes the release of 
nascent peptide chains from the 60S subunit [178]. Sub-
sequently, VCP in complex with other factors stimulates 
the removal  of the defective translation products [179]. 
RQC is crucial to maintain the health of the nervous sys-
tem, and impaired RQC is associated with different forms 
of neurodegeneration [57, 175, 180].

Golgi apparatus, vesicular trafficking, lysosomes
VCP promotes the reassembly of the Golgi apparatus 
after mitosis [61, 62]. The ATPase is also involved in pro-
tein trafficking from the ER to the Golgi apparatus [60], 
endolysosomal sorting of ubiquitinated proteins [64, 162, 
181], and the elimination of dysfunctional lysosomes 
[64–66].

Due to their roles in autophagy and cell signaling, lys-
osomes serve as control hubs for cellular homeostasis 
[182]. Impaired performance of the autophagy-lysosomal 
pathway (ALP) is a major contributor to neurodegen-
erative diseases, including FTD, ALS, PD, and AD [182, 
183]. Interestingly, neurodegeneration can arise from lys-
osomal dysfunction in neurons as well as non-neuronal 
cells, such as astrocytes and microglia [182].

Several VCP activities ensure the proper execution of 
ALP. For example, VCP conducts the endo-lysosomal 
damage response, called ELDR [65]. In collaboration 
with the ELDR components UBXD1, PLAA (phospho-
lipase A2-activating protein, Doa1), and YOD1 (deu-
biquitinase), VCP stimulates the removal of damaged 
lysosomes. During ELDR, VCP and the ELDR compo-
nents are recruited to damaged lysosomes. Upon recruit-
ment, at least a portion of UBXD1, PLAA, and YOD1 
colocalize with VCP on dysfunctional lysosomes.
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Impaired ELDR is associated with several VCP vari-
ants that cause multisystem proteinopathy 1 (MSP1, 
formerly referred to as IBMPFD). Lysosomal clearance 
is compromised in skeletal muscle tissue from patients 
producing VCPR155H or VCPR93C variants. In mouse or 
cell culture models, VCPR155H, VCPL198W, and VCPA232E 
reduce autophagic flux and clearance [65]. Earlier stud-
ies, using cell culture, mouse models, and patient sam-
ples, uncovered that VCPR155H, VCPA232E and VCPE578Q 
regulate autophagosome maturation, autophagic flux, 
and autolysosome formation in skeletal muscle and cul-
tured cells [184].

The importance of ALP in human neurons is illus-
trated by the VCP cofactor PLAA, which controls 
endolysosomal proteostasis at the synapse [185]. Espe-
cially, PLAA directs (i) post-endocytic trafficking of 
signaling receptors required for neural development 
and (ii) the ubiquitin-dependent sorting of synaptic 
vesicle factors during recycling.

Taken together, alterations in VCP and its cofactors 
can derail ALP in skeletal muscle, neurons, and non-
neuronal cells of the nervous system. Cellular and ani-
mal models as well as patient-derived samples have 
linked these changes to lysosomal damage and dysfunc-
tion [65, 184–186]. Several VCP variants that compro-
mise ALP are established causes of MSP1.

Nucleus, replication, cell cycle progression, DNA damage 
response, transcription
VCP shuttles between the nucleus and the cytoplasm. 
This dynamic localization is important for the control of 
nucleophagy, nuclear size [187], replication [78, 79, 188], 
cell cycle progression [135, 189], intranuclear quality 
control/splicing [190–193], genome integrity [194], and 
the response to transcriptional stress or DNA damage 
[72, 82, 84, 85, 195]. VCP mutants with aberrant nucleo-
cytoplasmic distribution contribute to the pathology of 
MSP1, ALS, hereditary spastic paraplegia (HSP), and PD 
([136], see below).

The broad impact of VCP-dependent activities in the 
nucleus is exemplified by the removal of SUMOylated 
and ubiquitinated proteins at the replication fork [78] and 
mitotic spindle formation [189]. It is also relevant to lipid 
droplet assembly in the cytoplasm ([43], see below). The 
kinase Aurora A is necessary to form mitotic spindles 
[196], but VCP restricts the association of Aurora A with 
centrosomes [197]. To dismantle mitotic spindles, VCP 
removes Aurora A and other spindle assembly factors 
from chromatin [196, 198]. VCP overexpression stimu-
lates the degradation of Aurora A, whereas VCP inhi-
bition increases the abundance of Aurora A [189]. The 
control of Aurora A levels is driven by the collaboration 

between VCP and ER membrane protein complex subu-
nit 3 (EMC3) [189]. Together, VCP and its binding part-
ner EMC3 control the cell cycle by orchestrating the 
progression of M phase.

VCP regulates additional nuclear events that ensue 
in a wide-reaching control of organismal homeo-
stasis. This is illustrated by the accumulation of fat 
and lipid droplets (LDs) in experimental rodents on 
a high fat diet [43]. Studies in mice and HepG2 cells 
(hepatocellular carcinoma) uncovered the underlying 
mechanism as changes in the activation of the tran-
scription factor sterol regulatory element binding fac-
tor 1 (SREBP1). In the nucleus, SREBP1 controls the 
transcription of target genes involved in lipid biosyn-
thesis. To enter the nucleus, SREBP1 has to be cleaved 
in the ER membrane. SREBP1 proteolytic processing 
relies on the collaboration of ubiquitinated SREBP1, 
VCP, and the rhomboid protease RHBDL4 [43]. Thus, 
VCP knockdown or pharmacological VCP inhibition 
(NMS-873) reduces SREBP1 cleavage. The mutation 
VCPA232E compromises the interaction with RHBDL4 
and ubiquitinated SREBP1. When kept on a high fat 
diet, VCPA232/+ knock-in mice accumulate less fat in 
the liver, have a larger intra-abdominal fat mass, and 
improved insulin tolerance.

In summary, the distribution of VCP between the 
nucleus and the cytoplasm is dynamic. Both cytoplasmic 
and nuclear VCP control functions that are located in the 
nucleus.

Ciliogenesis
Non-motile primary cilia control signaling in a wide 
variety of cell types [199, 200]. Primary cilia regulate 
the metabolism and cell migration in neurons and the 
metabolism in astrocytes [199, 201, 202]. Moreover, pri-
mary cilia of adult neural stem cells are essential for adult 
neurogenesis. On the other hand, dysfunctional primary 
cilia shape the pathological signaling events associated 
with ALS, PD, and AD [203]; they also instigate retinal 
diseases [204]. The proteome of primary cilia includes 
VCP, several interacting proteins and cofactors, such as 
SQSTM1/p62, NSFL1C, VCPIP1, optineurin (OPTN), 
and ANKRD13A [205].

The proper biogenesis of primary cilia and ciliary sign-
aling depend on VCP [205]. These processes require the 
ciliary localization of VCP and some of its cofactors [11, 
205]. For instance, VCP and UBXN10 are indispensable 
for ciliogenesis. Together, VCP and UBXN10 control the 
anterograde macromolecular transport into cilia [11]. 
Interestingly, a bidirectional link connects ciliopathies to 
autophagy [206]; this interplay could involve members of 
the VCP protein network.
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Cell survival and death
VCP controls cell viability, but is also closely associ-
ated with the regulation of cell death. Mechanistic links 
between VCP and cell death are underscored by VCP 
inhibitors that trigger cancer cell death [72, 95, 207–209]. 
VCP-related death involves mitochondrial pathways, ER 
homeostasis, or autophagy.

VCP cofactors regulate the trajectory towards cell sur-
vival or death; they can have anti- or pro-apoptotic activ-
ities [54, 72]. For example, the adaptor UBXD8 recruits 
VCP to mitochondria and promotes the degradation 
of the pro-apoptotic factors Noxa, Bik, and Bnip3 [54]. 
In this scenario, the UBXD8-dependent degradation of 
Noxa restricts apoptosis [54].

The cofactor SVIP controls ERAD and autophagy by 
inhibiting VCP [210, 211]. SVIP abundance is devel-
opmentally regulated in an organ-specific fashion. 
Prolonged and excessive ER stress can increase the abun-
dance of SVIP and ultimately cause apoptosis, at least in 
some cell types [210]. Derlin-1 (DERL1), another compo-
nent of VCP complexes involved in ERAD, also facilitates 
cell death following extensive ER stress [212].

Taken together, the developmental stage, physiological 
conditions, and cell type determine the role of VCP in 
cell fate decisions. VCP cofactors shape these decisions.

Granulostasis
Eukaryotic cells contain diverse ribonucleoprotein (RNP) 
complexes that often organize into complex RNA gran-
ules. These granules regulate RNA metabolism and 
thereby impact cellular homeostasis [9]. Neuronal RNP 
granules move mRNA from the soma to cell processes 
for localized translation. Such localized protein synthesis 
controls neuronal plasticity and is essential to learning 
and memory [213]. Fear memory has been connected to 
VCP [59].

Many RNA granules are produced constitutively, while 
others form under special conditions, such as acute or 
chronic stress [214, 215]. Stress granules (SGs) assem-
ble when oxidants, heat, viral infection, or other adverse 
events interfere with translation initiation [216]. Tran-
sient SGs formed during acute stress are mostly cyto-
protective. By contrast, chronic stress generates cellular 
inclusions that differ in composition from their acute 
stress counterparts. Chronic SGs are less dynamic, resist-
ant to disassembly, and may promote cell death [215]. 
Neurodegeneration is associated with elevated ROS lev-
els and chronic inflammation [217]; both contribute to 
the accumulation of permanent inclusions.

The molecular mechanisms maintaining granulostasis 
are essential for neuronal health. In particular, the mal-
function of individual granulostasis factors can prompt 

or accelerate the decline of CNS or PNS performance. 
Studies in different model systems established that VCP 
serves as a critical granulostasis factor (summarized in 
Table  3). Many of the insights described here relate to 
acute stress, although chronic is most relevant to neu-
rodegeneration. Nevertheless, transient SGs can convert 
to persistent structures, and both granule types have 
common features. Thus, the knowledge generated with 
acute SGs is pertinent to the inclusions observed during 
neurodegeneration.

Genetic and biochemical evidence links VCP to granulo-
stasis  Stress generally elicits the ubiquitination of pro-
teins; the precise patterns of ubiquitination are deter-
mined by the type of stress. VCP-cofactor complexes 
recognize ubiquitinated substrates, including those pre-
sent in SGs and disease-related inclusions. VCP is an 
evolutionarily conserved protein that modulates granule 
properties and disassembly [73, 159]. In budding yeast, 
the essential Cdc48 protein controls SG removal [159]. 
The loss of Ubx2p or Vms1p, Cdc48/VCP cofactors, 
impairs SG clearance [159].

VCP also controls granule clearance in mammalian cells. 
To this end, VCP associates with SGs, which is depend-
ent on the stressor, cell type, and PTMs. SUMOylation 
in the N-domain increases upon oxidative or ER stress. 
Concomitant with SUMOylation, VCP relocates to SGs 
and the nucleus [140]. Notably, the stress-induced redis-
tribution is abolished for several pathogenic VCP muta-
tions (G97E, R155C, R159H, A232E; Table  4). Some of 
these mutants (G97E, R155C, R159H) also diminish 
the assembly of active VCP hexamers and alter cofactor 
binding [140, 153, 220, 221].

In C2C12 myoblasts, the overexpression of VCPR155H 
or VCPA232E, mutant genes linked to multisystem pro-
teinopathies (MSP, see below) triggers SG formation even 
without stress. These abnormal granules contain TDP-43, 
a key component of neuronal inclusions. VCPR155H and 
VCPA232E compromise the disassembly of arsenite-SGs in 
C2C12 cells [67]. By contrast, the mutants do not prevent 
the removal of heat shock-SGs. At the same time, phar-
macological VCP inhibitors interfere with the dissolution 
of heat shock-SGs in HeLa cells [219].

Ubiquitination is indispensable for cells to recover from 
heat stress [68]. This requirement is shared by several cell 
types, including neurons. In particular, the VCP-depend-
ent disassembly of heat shock-SGs relies on the ubiquit-
ination of SG proteins. This prerequisite is not observed 
for arsenite-SGs.
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Table 3  The role of VCP in granulostasis. All comparisons are between controls and the experimental condition listed in the table. 
Abbreviations: acute, acute stress; CB-5083, reversible competitive inhibitor of VCP [142]; Δ, gene deletion; Eeyarestatin 1, directly 
binds VCP, preferentially interacts with membrane-associated VCP, inhibits ERAD [218]; MG132, proteasome inhibitor; NA, not 
applicable; NMS-873, allosteric VCP inhibitor [149]. Cellular models: HEK293, human embryonic kidney epithelial cells; HeLa, human 
cervix adenocarcinoma, epithelial cells; MEF, mouse embryonic fibroblast; Neuro2a, mouse neuroblastoma cells; U2OS, human 
osteosarcoma cells, epithelial morphology; S. cerevisiae, budding yeast

Experimental condition SG inducer Phenotype related to SGs Model system Reference

VCP knockdown heat, acute impaired SG clearance HeLa [159]

VCP knockdown heat, acute impaired SG clearance U2OS [141]

VCP knockdown arsenite, acute impaired SG formation HeLa [73]

VCP knockdown MG132, acute impaired SG formation HeLa [73]

VCP pharmacological inhibition heat, acute impaired SG clearance HeLa [159]

VCP pharmacological inhibition arsenite, acute impaired SG formation HeLa [73]

VCP pharmacological inhibition MG132, acute impaired SG formation HeLa [73]

VCP pharmacological inhibition (Eeyar-
estatin 1)

heat, acute impaired SG clearance U2OS [141]

VCP pharmacological inhibition (CB-
5083)

heat, acute impaired SG clearance HeLa [219]

VCP pharmacological inhibition (CB-
5083)

arsenite, acute impaired SG clearance HeLa [219]

VCP pharmacological inhibition (NMS-
873)

heat, acute impaired SG clearance HeLa [219]

VCP pharmacological inhibition (NMS-
873)

arsenite, acute impaired SG clearance HeLa [219]

VCP pharmacological inhibition (CB-
5083)

heat, acute impaired SG clearance U2OS [68]

VCPR155H knock-in NA increased levels of proteins with oxida-
tive damage; levels of G3BP1, eIF2α, 
p-eIF2α unchanged

VCPR155H knock-in mouse [67]

VCPR155C overexpression arsenite, acute reduced localization of VCP in SGs 
and nucleus

HEK293 [140]

VCPR155H overexpression NA constitutive SGs; SGs contain eIF3 subu-
nits, TDP-43, VCP

HeLa [159]

VCPR155H overexpression heat, acute no SG clearance defect C2C12 [67]

VCPR155H overexpression heat, acute impaired SG clearance U2OS [74]

VCPR155H overexpression arsenite, acute impaired SG clearance C2C12 [67]

VCPR159H overexpression arsenite, acute reduced localization of VCP in SGs 
and nucleus

HEK293 [140]

VCPA232E overexpression arsenite, acute impaired SG clearance C2C12 [67]

VCPA232E overexpression heat, acute no SG clearance defect C2C12 [67]

VCPA232E overexpression heat, acute impaired SG clearance U2OS [141]

VCPA232E overexpression NA constitutive SGs; SGs contain eIF3 subu-
nits, TDP-43, VCP

HeLa [159]

VCPA232E overexpression heat, acute impaired SG clearance U2OS [74]

VCP wild type overexpression MG132 VCP and Dorfin colocalize in aggresome HEK293 [76]

VCPK524A co-expression with SOD1G85R NA reduced Dorfin-dependent ubiquitina-
tion of SOD1G85R; VCPK524A does not pre-
vent binding of Dorfin to SOD1G85R

HEK293, Neuro2a [76]

UFDL1 knockdown arsenite, acute impaired SG formation HeLa [73]

UFDL1 knockdown MG132, acute impaired SG formation HeLa [73]

PLAA knockdown arsenite, acute impaired SG formation HeLa [73]

PLAA knockdown MG132, acute impaired SG formation HeLa [73]

ZFAND1 knockdown heat, acute SG clearance not impaired, VCP recruit-
ment to SGs not reduced

HeLa [75]

ZFAND1 knockdown arsenite, acute impaired SG clearance, reduced VCP 
recruitment to SGs

HeLa [75]
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Links between VCP and pathologic inclusions were 
uncovered by analyzing a superoxide dismutase 1 (SOD1) 
variant that causes ALS. The E3 ligase Dorfin (double ring 
finger protein, RNF19A) ubiquitinates SOD1G85R, but 
not wild type SOD1 [76]. Dorfin binds VCP directly, and 
VCP-Dorfin complexes are formed in  vitro and in  vivo. 
Following Dorfin-dependent ubiquitination, SOD1G85R 
is degraded. Dorfin-mediated SOD1G85R ubiquitina-
tion requires VCP; VCPK524A (ATPase activity reduced 
compared with wild type VCP) interferes with this step 
[76]. However, VCPK524A does not prevent the interac-
tion between Dorfin and SOD1G85R. Importantly, Dorfin 
and VCP co-localize in neuronal inclusions of postmor-
tem brain tissue obtained from PD and ALS patients [76]. 
This study supports the idea that during neurodegen-
eration VCP regulates the accumulation of inclusions by 
directly controlling  the ubiquitination of misfolded pro-
teins (Table 4).

VCP cofactors can direct the ATPase to SGs and thereby 
regulate granule removal [74, 75]. For example, the zinc 
finger AN1-type containing 1 (ZFAND1) colocalizes with 

arsenite-SGs, but not heat shock-SGs [75]. VCP needs 
ZFAND1 to associate with arsenite-SGs, but this is not 
the case for heat shock-SGs. Furthermore, ZFAND1 
knockdown delays the clearance of arsenite-SGs, but not 
of heat shock-SGs. The VCPR155H mutant does not aggra-
vate the effect of ZFAND1 depletion in HeLa cells, sug-
gesting that ZFAND1 and VCP are part of the same path-
way mediating SG clearance [75]. ZFAND1 also recruits 
the proteasome, which likely collaborates with VCP to 
dissolve arsenite-SGs [75].

Genetic and pharmacological studies implicate the 
autophagy activating kinase 1/2 (ULK1/2) in the 
removal of heat shock-SGs via VCP phosphorylation 
and activation [141]. ULK1/2 and VCP colocalize in 
heat shock-SGs. Heat stimulates their interaction and 
increases the ULK1/2-mediated phosphorylation of 
VCP on S13, S282, and T761 [141]. ULK1/2 inhibition 
slows down SG dissolution, but has no effect on SG 
assembly. Moreover, phospho-mimetic, but not phos-
pho-defective, VCP mutants restore SG disassembly 
when VCP or ULK1 are knocked down [141]. Finally, 

Table 3  (continued)

Experimental condition SG inducer Phenotype related to SGs Model system Reference

ZFAND1 knockdown hydrogen peroxide, acute SG clearance not impaired, VCP recruit-
ment to SGs not reduced

HeLa [75]

ZFAND1 knockdown osmotic stress, acute SG clearance not impaired, VCP recruit-
ment to SGs not reduced

HeLa [75]

Control; wild type VCP, endogenous 
levels

heat, acute VCP-ULK1/2 binding increased; VCP 
recruited to SGs; ULK1/2 located in SGs

MEF [141]

ULK1/2 knockdown arsenite, acute impaired SG clearance MEF [141]

ULK1/2 knockdown heat, acute impaired SG clearance MEF [141]

ULK1/2 knockdown plus phosphomi-
metic VCP mutant

heat, acute SG clearance rescued MEF [141]

ULK1/2 pharmacological inhibition heat, acute impaired SG clearance U2OS [141]

ULK1/2 pharmacological inhibition arsenite, acute impaired SG clearance U2OS [141]

ULK1/2 pharmacological inhibition heat, acute impaired SG clearance C2C12 [141]

ULK1/2 pharmacological inhibition arsenite, acute impaired SG clearance C2C12 [141]

ULK1/2 agonist heat, acute faster SG clearance U2OS [141]

VCP knockdown plus
ULK1/2 agonist

heat, acute impaired SG clearance U2OS [141]

FAF2 (OPTN) knockdown heat, acute impaired SG clearance U2OS [74]

G3BP1/2 double knockdown plus ubiqui-
tination deficient G3BP1 mutants

heat, acute reduced VCP recruitment to SGs U2OS [74]

ubx2Δ NA SG accumulation S. cerevisiae [159]

vms1Δ NA SG accumulation S. cerevisiae [159]

Cdc48 temperature sensitive allele; non-
permissive temperature

NA SG accumulation S. cerevisiae [159]

Ufd1 temperature sensitive allele; non-
permissive temperature

NA SG accumulation S. cerevisiae [159]

Npl4 temperature sensitive allele; non-
permissive temperature

NA SG accumulation S. cerevisiae [159]
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Table 4  Characteristics of pathogenic VCP variants relevant to neurodegeneration. The properties of VCP mutants linked to 
neurodegeneration are listed. Phenotype  descriptions focus on VCP activity, subcellular distribution, and the cellular activities 
impacted. The changes relative to the wild type protein are listed. Neurodegenerative diseases linked to the VCP mutants are also 
shown. Not determined, consistent results describing the effects on cellular parameters are not yet available; ?, disease link not 
defined. ALS, amyotrophic lateral sclerosis; CMT2Y, Charcot-Marie-Tooth disease, type 2y; HSP, hereditary spastic paraplegia; MSP1, 
multisystem proteinopathy 1; PMA, progressive muscular atrophy, a subtype of ALS. Information was accumulated from ClinVar or 
other databases [222–224] and original papers. VCP mutagenesis identified additional amino acid residues that modulate VCP function 
[225]. Only mutations linked to neurodegenerative diseases are included in Table 4

VCP variant Phenotype: changes in cellular 
parameters

Disease link References

Mutations in N domain (residues 1–187)
  I27V not determined MSP1, PD [226, 227]

  K60R not determined ALS [228]

  R89Q not determined ALS [229]

  N91Y not determined ALS- PMA, FTD, ALS, MSP1 [224, 229]

  R93C not determined MSP1, ALS [224, 228–230]

  R93H not determined HSP, FTD, ALS, MSP1 [224, 231]

  R95C not determined ? [223]

  R95G accelerated substrate unfolding in complex 
with UFD1L-NPL4; elevated basal ATPase 
activity; smaller increase in ATPase activity 
upon substrate binding; imbalanced cofactor 
binding; reduced nuclear levels; altered ER 
organization; impaired dendritic spine forma-
tion; reduced interaction with Ankrd13A; 
reduced interaction with caveolin-1

MSP1 [168, 220, 224, 232, 233]

  R95H not determined ? [223]

  G97E suppresses VCP hexamer assembly MSP1, CMTY2, FTD, ALS, atypical MSP1 [140, 224, 234]

  D98E not determined MSP1 [223, 224]

  D98V not determined ALS [229]

  I114V not determined ALS [229, 235]

  T127A not determined FTD [234]

  G128A not determined likely pathogenic [223, 224]

  P137L accumulation of autophagosomes MSP1 [236]

  P137S not determined AD [223, 224]

  I151V not determined ALS [229]

  R155C reduced nuclear levels; increased death 
of spinal cord motor neurons; aberrant 
synapse formation; altered transcription; 
ER stress; mitochondrial swelling; reduced 
mitochondrial membrane potential; reduced 
ATP production; reduced mitochondrial ATP 
synthase activity; reduced ADP/ATP trans-
location across mitochondrial membranes; 
increased oxidative stress; TDP-43 mislocal-
ized; increased levels of insoluble and phos-
phorylated TDP-43 in brain; autophagosome-
lysosome dysfunction (accumulation 
of autophagosomes and endolysosomes)

ALS, HSP, ALS- PMA [174, 224, 228, 229, 237–240]

  R155G not determined ? [223]
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Table 4  (continued)

VCP variant Phenotype: changes in cellular 
parameters

Disease link References

  R155H increased affinity for UFD1L-NPL4; accel-
erated substrate unfolding in complex 
with UFD1L-NPL4; elevated basal ATPase 
activity; smaller increase in ATPase activity 
upon substrate binding; reduced binding 
to UBXD1 (UBXN6); imbalanced cofactor 
binding; reduced nuclear levels; reduced 
mitochondrial membrane potential; reduced 
ATP production; excessive degradation 
of mitofusin; impaired mitochondrial fusion; 
altered axonal transport of mitochondria 
(Drosophila ortholog mutant dVCP R152H); 
deficient lysosomal clearance; reduced inter-
action with ANKRD13A; reduced interaction 
with caveolin-1

MSP1, ALS [64, 136, 153, 173, 174, 220, 224, 232, 233, 
241–243]

  R155P reduced nuclear levels MSP1, FTD, ALS [136, 224]

  R155S not determined MSP1, FTD, A:S [224]

  G156C not determined ALS [229]

  G157R accumulation of autophagosomes MSP1, FTD, ALS [224, 236]

  M158V increased number of spinal motor neurons 
with VCP-positive nuclei; increased levels 
of cytoplasmic TDP-43

ALS, MSP1, FTD [224, 244]

  R159C VCP- and ubiquitin-positive cytoplasmic 
and nuclear aggregates in muscle

MSP1 HSP, ALS [224, 229, 245–247]

  R159G not determined ALS, ALS-FTD [224, 229, 241]

  R159H accelerated substrate unfolding in complex 
with UFD1L-NPL4; elevated basal ATPase 
activity; smaller increase in ATPase activity 
upon substrate binding; increased cytoplas-
mic abundance of TDP-43

MSP1, ALS, FTD [224, 229, 232, 244, 248]

  R159S not determined ALS [224]

  S171R not determined CMT2Y [249]

  E185K defective autophagy, accumulation of imma-
ture autophagosomes

CMT2Y [250]

Mutations in N-D1 linker (residues 188–207)
  R191G not determined ALS [229]

  R191Q accelerated substrate unfolding in complex 
with UFD1L-NPL4; elevated basal ATPase 
activity; smaller increase in ATPase activity 
upon substrate binding; reduced nuclear 
levels; increased cell death; aberrant synapse 
formation, altered transcription; TDP-43 
mislocalized; ER stress; mitochondrial swell-
ing; reduced mitochondrial membrane 
potential; reduced ATP production; reduced 
mitochondrial ATP synthase activity; reduced 
ADP/ATP translocation across mitochondrial 
membranes; increased oxidative stress

MSP1, ALS, PD, CMT2Y, FTD [174, 224, 232, 237, 240, 251]

  R191P not determined ALS, FTD [224, 229]

  L198W accelerated substrate unfolding in complex 
with UFD1L-NPL4; elevated basal ATPase 
activity; imbalanced cofactor binding; smaller 
increase in ATPase activity upon substrate 
binding; cytoplasmic and intranuclear 
inclusions in muscle; deficient lysosomal 
clearance

MSP1 [65, 153, 232, 252]

Mutations in D1 domain (residues 208–458)
  I216M not determined ? [223]
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the ULK1/2 agonist LYN1604 accelerates SG removal. 
LYN1604 also facilitates the clearance of persistent 
SGs that contain pathogenic mutant proteins, such as 
VCPA232E, FUSR521C, or TIA1A381T [141]. In addition, 
the small molecule SMER28 activates VCP and boosts 
the removal of pathological variants of huntingtin or 
ataxin-3, and of cellular inclusions that contain ubiqui-
tinated proteins [107]. SMER28 achieves the clearance 
of aberrant proteins by stimulating autophagosome bio-
genesis and UPS function [107].

VCP not only regulates SG removal, it also controls granule 
formation. Thus, VCP knockdown impairs SG assembly in 
HeLa cells exposed to arsenite, heat shock, or the protea-
some inhibitor MG132 [73]. Similar results were obtained 
(i) with pharmacological VCP inhibitors (Eeyarestatin I, 
ML240), and (ii) the knockdown of VCP cofactors UFD1L 
(ubiquitin fusion degradation 1 like) or PLAA (phospholi-
pase A2-activating protein) [73]. VCP, UDF1L, and PLAA 
also determine the composition of SGs. Their depletion 
prompts the accumulation of defective ribosomal products 

Table 4  (continued)

VCP variant Phenotype: changes in cellular 
parameters

Disease link References

  A232E increased affinity for UFD1L-NPL4; accel-
erated substrate unfolding in complex 
with UFD1L-NPL4; elevated basal ATPase 
activity; imbalanced cofactor binding; smaller 
increase in ATPase activity upon substrate 
binding; reduced nuclear levels; excessive 
degradation of mitofusin; impaired mito-
chondrial fusion; altered axonal transport 
of mitochondria (Drosophila ortholog mutant 
dVCP A229E); ubiquitin- and TDP-43-positive 
aggregates accumulated in muscle; TDP-43 
accumulated in cytoplasm of brain cells; 
deficient lysosomal clearance; NF-kB activa-
tion; reduced interaction with ANKRD13A; 
reduced interaction with caveolin-1; altered 
processing of transcription factor SREBP1, 
changes in lipid biosynthesis

MSP1 [43, 65, 119, 136, 153, 173, 224, 232, 233, 242, 
252]

  T262A increased affinity for UFD1L-NPL4; accel-
erated substrate unfolding in complex 
with UFD1L-NPL4; elevated basal ATPase 
activity; smaller increase in ATPase activity 
upon substrate binding

MSP1, PD [232, 253]

  N387H TDP-43 positive inclusions in muscle MSP1 [253]

  N387T not determined ALS [229, 247]

  G376E not determined; likely pathogenic FTD [254]

  D395A reduced ATPase activity behavioral FTD [255]

  D395G reduced ATPase activity; accumulation of tau-
containing NFTs; increased spread of proteo-
pathic seeds

FTD [119, 224, 256–258]

  A439S not determined MSP1 [259]

  D450V not determined MSP1 [232]

Mutations in D2 domain (residues 481–761)
  R487H not determined ALS, pyramidal ALS [229, 260]

  E578Q substrate trapping; ATPase activity deficient; 
ER stress induced; ubiquitinated proteins 
accumulated at ER membrane; deficient 
lysosomal clearance

MSP1 [64, 119, 173, 261]

  D592N impaired binding to 20S proteasome subunit ALS, FTD with neurofibrillary tangles [224, 229, 241, 262]

  R662C not determined ALS [229, 247]

Others
  Splice 
variant; c.1696-
3C > T

not determined ALS [228]
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(DRIPs) adjacent to or in SGs. Conversely, DRIPs are absent 
from control granules. In addition, VCP regulates the size 
and distribution of SGs [73].

Aggregates of α-synuclein, tau, or TDP-43 can serve 
as templates to trigger aggregate formation in the cyto-
plasm of neighboring cells. VCP reduces such proteo-
pathic seeding in neurons and thereby limits the spread 
of pathological inclusions in the CNS. To achieve this, 
VCP likely detects seed-induced lysosomal damage and 
stimulates the removal of dysfunctional lysosomes [256]. 
VCP mutations, for example VCPD395G, can interfere with 
the elimination of aberrant lysosomes. As a result, the 
dissemination of proteopathic seeds is enhanced. Fur-
thermore, the diminished ATPase activity of VCPD395G 
compromises its disaggregase activity. VCPD395G has 
been linked to behavioral FTD and neuronal tau aggre-
gates that resemble AD neurofibrillary tangles [119, 257, 
258]. The partial dissolution of tau aggregates present 
in human AD-brains is fueled by ATP and relies on tau 
poly-ubiquitination [119].

Despite solid evidence linking VCP mutations to neuro-
degenerative diseases, it should be emphasized that their 
pathologies and the properties of intracellular aggre-
gates vary widely. Information on the presence of VCP 
in pathologic inclusions can be conflicting, even for the 
same disease. Such discrepancies may arise from differ-
ences in the disease stage, cell types examined, genetic, 
or environmental variables. On the other hand, wild type 
and mutant VCP variants can differ in their association 
with pathological inclusions [119].

To date, several general statements summarize the con-
tributions of VCP to granulostasis. (a) The specific role 
of VCP is dependent on the cell type. (b) VCP modifi-
cations, especially SUMOylation and phosphorylation, 
regulate granulostasis. (c) The type of acute stress deter-
mines how VCP affects granule dynamics. (d) Patho-
genic VCP variants can alter the dynamics, clearance, or 
formation of granular compartments. (e) Wild type VCP 
restricts the spread of proteopathic aggregates. (f ) VCP’s 
role for granules/aggregates formed during chronic stress 
is poorly defined.

Effects of VCP mutations on glial cells
In the context of neurodegeneration, much attention has 
been given to the function of VCP in neurons. Glial cells 
ensure the survival and proper functioning of neurons 
[263]. Recent studies examined VCP in glial cells [237, 
264, 265]. The impact of mutant VCP may vary in neu-
rons and astrocytes, although mutations (R155C, R191Q) 

affect both cell types [237]. In astrocytes, mutant VCP 
can have cell-autonomous as well as non-cell-autono-
mous effects. For instance, mutant VCP may prompt the 
cell-autonomous reactive transformation of astrocytes 
[265]. The inability to support wild type motor neurons in 
a co-culture system illustrates the non-cell-autonomous 
effects of VCP mutant astrocytes [237]. It will be interest-
ing to determine the impact of VCP mutant astrocytes in 
a spinal cord environment.

VCP and lipid metabolism
The formation of SGs and lipid droplets is closely inter-
twined, and the stress-induced SG assembly is com-
monly accompanied by the production of LDs [266]. 
Interestingly, VCP also regulates the accumulation of 
fat and LDs in cultured liver cells and experimental 
mice [43]. In particular, VCPA232E alters lipid homeo-
stasis in cultured hepatocytes and mice on a high fat 
diet [43]. The VCP-dependent mechanisms that deter-
mine the proteolytic processing and nuclear transport 
of the transcription factor SREBP1 are discussed in a 
previous section.

The AMFR-INSIG1-VCP complex controls the sterol-
dependent degradation of HMG-CoA reductase, which is 
a rate-limiting enzyme for the biosynthesis of cholesterol 
[267, 268]. In a cell culture model, the ATPase negative dou-
ble mutant VCPK251Q/K524Q is unable to support the sterol-
dependent degradation of HMG-CoA reductase [267].

In addition, ceramides worsen the pathologies linked to 
VCPR155H [269]. However, feeding pregnant mice with a 
diet enriched in lipids ameliorates the lethal effects caused 
by homozygous VCPR155H/R155H in the offspring [270].

VCP and neurodegenerative diseases
VCP is implicated in a broad spectrum of health condi-
tions that include several neurodegenerative diseases. 
Information pertinent to transcript and especially pro-
tein concentration in the healthy and diseased nervous 
system are important for strategies aimed at disease pre-
vention and treatment. The VCP protein levels in various 
tissues are depicted in Fig. 3a. More details are provided 
in Table S3.

VCP transcripts and protein in nervous system
The VCP gene is expressed ubiquitously, but the tran-
script and protein levels vary somewhat according to the 
tissue and cell type. This includes VCP transcripts in dif-
ferent brain regions [271, 274]. VCP transcripts undergo 
alternative splicing [97], but the physiological relevance 
of splice variants and their possible protein products are 
poorly understood. Among 36 human VCP transcripts, 
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15 encode proteins that comprise between 55 and 806 
amino acid residues [275].

The VCP protein is present throughout the body, with 
high concentrations in most organs and tissues (Fig. 3a). 
In the nervous system, VCP protein abundance is par-
ticularly low in the cerebrospinal fluid (Fig. 3a). By con-
trast, the VCP protein is abundant in glial and neuronal 
cells of the cerebral cortex, Purkinje cells of the cerebel-
lum, and hippocampal neurons (Fig. 3, Table S3 [271]).

VCP mutations associated with neurodegenerative disease
The VCP gene is located on chromosome 9; many of the 
clinical variants are inherited in an autosomal-dominant 
fashion. Several not mutually exclusive scenarios are 
possible in the context of neurodegeneration; (i) mutant 
VCP causes disease, and/or (ii) mutant VCP modifies 

disease onset and progression. Pathological VCP vari-
ants can trigger inclusion body myopathy associated with 
Paget disease of the bone and frontotemporal dementia 
(IBMPFD); this rare disease is also described by the more 
general term multisystem proteinopathy (MSP) [276]. 
VCPR155H is the most common variant linked to MSP1, 
whereas VCPA232E causes especially serious patholo-
gies [173]. VCP mutations can instigate other neurode-
generative conditions [277], such as amyotrophic lateral 
sclerosis (ALS [278]), Parkinson’s disease (PD [253, 279]), 
Charcot-Marie-Tooth disease type 2y (CMT2Y [249, 
250, 253]), and hereditary spastic paraplegia (HSP [280]). 
Patients with VCP mutations display a wide spectrum of 
phenotypes. In a previous study, ~ 9% of the patients pre-
sented with clinical manifestations of ALS, 4% with PD, 
and 2% with AD [281]. However, as illustrated by ALS 

Fig. 3  VCP protein in different tissues, VCP transcripts in the nervous system, and VCP-associated diseases. a The abundance of the VCP protein 
is shown for different tissues and cell types (MSC, mesenchymal stromal cell; NK cells, natural killer cells; PBMC, peripheral blood mononuclear cell). 
The VCP gene expression in different parts of the brain and the distribution of the VCP protein throughout the human body are depicted [24, 271, 
272]. b VCP disease associations with a minimum score of 0.500 are presented. They belong to different categories [273]. c Brain regions that are 
particularly affected by FTD, ALS, or PD are delineated in color. Not all of the regions altered by the disease are demarcated
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[229], VCP mutants make different contributions to neu-
rodegeneration among global populations. Aside from 
causing neurodegeneration, VCP variants also modulate 
the pathologies of Alzheimer’s disease (AD) and some 
polyglutamine (polyQ) diseases, such as Huntington’s 
disease (HD) and spinocerebellar ataxia type 3 (SCA3/
Machado-Joseph disease) [28, 119, 121].

The diseases linked to VCP mutations affect distinct 
brain regions (Fig.  3). Nevertheless, these conditions 
share the accumulation of intracellular or extracellu-
lar inclusions that contain ubiquitinated proteins. The 
buildup of such aggregates is consistent with impaired 
protein quality control and disturbed proteostasis 
[282]. It is poorly understood how VCP mutations lead 
to the variety of phenotypes and defects in different 
parts of the brain. Diagnosis and treatment are further 
complicated by marked interfamilial and intrafamilial 
variations of symptoms [281].

Table 5 summarizes key features of the neurodegenera-
tive diseases that can be caused by VCP mutations.

Multisystem proteinopathy 1 (MSP1)
VCP mutations can cause the rare disorder inclusion body 
myopathy (IBM) associated with Paget’s disease of the bone 
(PBD) and frontotemporal dementia (IBMPFD). Formerly 
called inclusion body myopathy associated with Paget’s dis-
ease of the bone and frontotemporal dementia (IBMPFD), 
the disease is now referred to as multisystem proteinopathy 
1 (MSP1) [291, 292]. Almost all cases (> 99%) are caused by 
mutations in the VCP gene. MSP1 is characterized by three 
pathological features, early-onset Paget disease of the bone, 
adult-onset proximal and distal muscle weakness, and prema-
ture frontotemporal dementia (FTD; Table 5, [283]). However, 
2 to 3% of the patients who carry pathogenic VCP mutations 
show only frontotemporal dementia [257]. Aside from the 
VCP mutation, environmental factors may also determine the 
MSP1 pathology [277]. This hypothesis is supported by estab-
lished links between patient environments and the severity of 
Paget’s disease of the bone [293], ALS [278], and PD [294].

At the cellular level, the disease is characterized by ubiq-
uitin-positive inclusions containing RNA-binding proteins, 
such as TDP-43, in the CNS, bones, and muscles [292]. VCP 
mutations related to MSP1  are located in the N-domain, 
the linker between the N-domain and D1-domain, and 
the  D1-domain (Fig.  2, [295]). Several of these mutations 
increase the VCP ATPase activity of the D2 domain, but 
compromise autophagy. Impaired autophagy leads to the 
accumulation of autophagosomes and autophagic mark-
ers in the inclusions [163, 292, 295]. The dysregulation of 
autophagy may result from the abnormal binding of mutant 
VCP to substrates and cofactors [295].

Multiple MSP1 mutants display impaired VCP nuclear 
localization and SG association [136, 140]. Specifically, 

mutations R95G, R155H, R155P, R155C, R191Q, and 
A232E reduce the nuclear abundance of VCP [136]. VCP 
controls mitochondrial homeostasis; and several mutants 
exhibit mitochondrial dysfunction (Table 4). The patholo-
gies of MSP1 patients align with the essential role of VCP 
to support organ and tissue functions. Both brain and 
muscle heavily rely on proper mitochondrial performance.

Amyotrophic lateral sclerosis (ALS)
Amyotrophic lateral sclerosis (ALS) is a multisystem 
neurodegenerative condition, and 5–25% of all patients 
develop advanced FTD [296]. Approximately 9% of MSP1 
patients show clinical manifestations of ALS [276]. ALS 
is characterized by the progressive loss of motor neurons 
in the brain or spinal cord. Other motor and non-motor 
domains also contribute to the disease [263, 297, 298]. 
Most ALS cases are sporadic (sALS, 90–95%), whereas 5 
to 10% are familial (fALS). Among familial cases, 1 to 2% 
are linked to autosomal-dominant VCP mutations [237, 
241]. While amounting to less than 1% of sALS cases, 
VCP mutations are also found in sALS [247, 299].

At the cellular level, more than 95% of ALS patients show 
TDP-43 redistribution to the cytoplasm and aggregate for-
mation. This includes ALS-related VCP mutations, which 
commonly interfere with the nuclear localization of TDP-
43 [237, 239, 300]. Interestingly, the ATP-competitive VCP 
inhibitor ML240 can reverse the mislocalization of TDP-
43 in VCP-mutant motor neurons [301]. On the other 
hand, overexpression of Ter94, the Drosophila ortholog of 
VCP, rescues motor neuron degeneration instigated by the 
knockdown of TBPH (encodes Drosophila TDP-43) [302].

VCP mutation may also redistribute fused in sarcoma 
(FUS) from the nucleus to the cytoplasm in motor neurons 
derived from induced pluripotent stem cells (iPSCs) [303]. 
The knockdown of Cabeza (Caz), the Drosophila ortholog 
of human FUS, induces ALS-related pathologies, including 
motor neuron degeneration [304]. The defects are exagger-
ated by ter94 loss-of-function mutations. By contrast, wild 
type ter94 overexpression rescues the phenotypes [304].

Together, the experiments in flies emphasize that the 
RNA-binding proteins TDP-43 and FUS as well as VCP 
collaborate to maintain neuronal homeostasis.

Astrocytes are key players in the progression of neu-
rodegenerative diseases. In ALS, VCP mutant astrocytes 
undergo reactive transformation in a cell-autonomous 
fashion [237]. The state differs for VCP and SOD1 mutant 
astrocytes, emphasizing that the causative mutation deter-
mines the contribution of glial cells to ALS pathology [265].

Parkinson’s Disease (PD)
Parkinson’s Disease (PD) is characterized by the forma-
tion of amyloid inclusions, known as Lewy bodies. These 
inclusions arise from misfolded α-synuclein and contain 
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VCP [305]. Lewy body formation is accompanied by the 
loss of dopaminergic neurons in the substantia nigra and 
motor dysfunction [263].

Worldwide, the prevalence of PD amounts to 200 cases 
per 100,000 individuals [286]. Genetic predisposition 
combined with environmental factors is the most com-
mon cause of PD; 5 to 10% of the cases represent mono-
genic forms of the disease [306]. With ~ 4% incidence, PD 
is an established attribute of IBMPFD [281]. Unilateral 
rigidity, tremor, and bradykinesia are clinical features of 
PD patients with VCP mutations [251, 286]. Mutant VCP 
can initiate FTD and motor neuron disease. However, 
these cases are rare; they account for less than 1% of the 
mutations linked to FTD and movement disorders [279].

The cellular pathophysiology of PD includes impaired 
protein clearance, mitochondrial defects, and neuroin-
flammation [307], processes related to VCP dysfunction 
[308]. Notably, VCP gene expression declines at preclini-
cal and early clinical stages of PD [308].

Hereditary Spastic Paraplegia (HSP)
Hereditary Spastic Paraplegia (HSP) describes a group of 
neurological disorders that are distinguished by the degen-
eration of upper motor neurons [309]. While motor neuron 
degeneration is part of the HSP and ALS pathology, several 
parameters of the diseases differ. In general, the disease 
onset is earlier for HSP (mean age: 30–40 years) when com-
pared with ALS (mean age: 65 years) [310]. Weakness in the 
lower limbs is commonly symmetric for HSP patients, but 
asymmetric for ALS [310]. HSP patients display genetic and 
clinical heterogeneity, but are commonly linked to muta-
tions that affect endolysosomal and autophagic processes 
[311]. Through its interaction with strumpellin (SPG8, 
KIAA0196, WASHC5), VCP is connected to Autosomal 
Dominant Spastic Paraplegia Type 8 [97]. The VCP muta-
tions R155C and R159C have been identified in patients 
diagnosed with spastic paraplegia [238, 245].

Charcot‑Marie‑Tooth disease, type 2y (CMT2Y)
Aside from the CNS, VCP also controls the performance 
of the peripheral nervous system. This is illustrated by 
Charcot-Marie-Tooth (CMT) disease, a hereditary neu-
ropathy marked by chronic motor and sensory polyneu-
ropathy [289]. VCP mutations are linked to axonal CMT 
disease (CMT2Y) [249, 250], and the dominant mutant 
VCPE185K compromises autophagy. One outcome of the 
mutation is the buildup of immature autophagosomes 
[250]. How VCPS171R, another mutant causing CMT2, 
impacts cellular homeostasis has yet to be defined [249].

Modifiers of VCP disease
The clinical manifestations differ widely for MSP1 patients. 
Modifier genes, such as APOE variants may contribute 

to this heterogeneity [312]. Other potential modifiers of 
MSP1 have been reviewed recently [277]. Some of these 
candidate modifiers are linked to neurodegenerative dis-
eases. This is exemplified by the RNA-binding protein 
TIA1 [313]. Under stress conditions, TIA1 nucleates the 
assembly of SGs [214]. Mutations in the low-complex-
ity domain of TIA1 alter the dynamics of SGs [313]. The 
TIA1-containing granules interact with TDP-43, which 
becomes insoluble. As TDP-43 associates with VCP as well 
as TIA1 [12], it is conceivable that TIA1 mutations aggra-
vate the proteostasis defects caused by VCP variants.

Genetic variants of VCP cofactors may also func-
tion as modifiers of VCP disease. For example, optineu-
rin (OPTN) is part of a neuroprotective network that 
involves neurons, microglia, and oligodendrocytes 
[314]. OPTN binds ubiquitinated substrates, controls 
vesicle trafficking, inflammatory signaling, autophagy, 
mitophagy, and necroptosis [314–316]. Proximity labe-
ling identified VCP and several VCP cofactors as OPTN 
binding partners [317]. Interestingly, several OPTN 
mutations are associated with sALS and fALS [314].

To date, solid scientific evidence supports the conclu-
sion that different components of the VCP network, when 
mutated, cause neurodegeneration. However, the limited 
number of MSP1 patients, combined with the complexity 
of the VCP network, and the heterogeneity of patient pop-
ulations, complicate the identification of genetic modifiers 
of VCP disease. While several VCP mutants function as 
drivers of human disease, they may also modify the sever-
ity of neurodegenerative disorders (see below).

VCP variants as modulators of neurodegenerative disorders
VCP classifies as a disease susceptibility gene, and VCP 
variants may function as genetic modifiers. This concept 
is illustrated by disease-causing mutations that affect the 
nervous system. For example, VCP modulates the patho-
logical phenotypes associated with ATXN3 mutations, 
which can cause spinocerebellar ataxia type 3 (Machado-
Joseph Disease) [318, 319]. VCP is also a candidate modi-
fier gene for neurofibromatosis type 1 [320], ALS-related 
motor neuron degeneration [302, 304], and hereditary 
spastic paraplegia caused by atlastin mutations [167].

Furthermore, VCP functions as a modifier of poly(GR) 
translation in Drosophila [321]. Poly(GR) dipeptide 
repeats can be produced when the C9ORF72 gene carries 
G4C2 expansions. Poly(GR) peptides are cytotoxic and 
may cause ALS/FTD. RQC mechanisms (see above) that 
are mediated by VCP limit the accumulation of poly(GR) 
peptides. In particular, RQC relies on VCP phosphoryla-
tion by the kinase Akt (reviewed in [175]), which phos-
phorylates residues Ser352, Ser746, and Ser748 [322]. 
Notably, mutations of VCP Ser352, Ser746, or Ser748 are 
linked to neurodegeneration (Fig. 2).
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In line with the scenarios described above, we speculate 
that VCP mutants also modulate the manifestations of 
primary disease-causing events. For instance, the severity 
of FTD disease elicited by mutant VCP cofactors, such as 
SVIP [66], is modified by VCP gene variants. Mutations of 
PTM sites, such as residues phosphorylated by Akt [322], 
may also impinge on the course of neurodegeneration. 
Finally, VCP variants may have a broad impact on human 
health and functions of the nervous system by changing 
the age of onset and other disease phenotypes [323, 324].

Alzheimer’s disease (AD)
AD has a global prevalence of ~ 51.6 per 1,000,000 [325]. 
The disease is characterized by amyloid-β inclusions 
and neurofibrillary tangles, which contain hyperphos-
phorylated tau [326]. Tau stabilizes microtubules and 
is degraded by the proteasome or autophagy [327, 328]. 
The accumulation of hyperphosphorylated tau in neu-
rons promotes neuronal degeneration, loss of synapses, 
and cognitive deficits [329]. In the frontal cortex of AD 
patients, VCP is part of a MAPK/metabolism network; 
the ATPase colocalizes both with neurofibrillary tangles 
and Aβ plaques [330]. AD plaques also contain ubiquitin 
[331], a binding partner of various VCP complexes.

To our knowledge, there is no solid evidence for the 
idea that VCP mutations are a primary cause of AD. 
However, VCP contributes to the AD phenotype. This 
is illustrated by the interplay between VCP and tau. 
First, the drop of VCP concentration in the AD cortex 
is accompanied by a rise in tau phosphorylation [332]. 
Second, VCP knockdown in primary rat cortical neurons 
increases the abundance of Ser262/356-phosphorylated 
tau, while reducing soluble tau [332]. Third, the mutant 
VCPD395G is linked to autosomal-dominant dementia 
characterized by neuronal tau aggregation [119]. As the 
ATPase activity of VCPD395G is impaired, the mutant fails 
to disaggregate tau inclusions properly.

PolyQ expansion diseases
PolyQ diseases are caused by the expansion of cyto-
sine-adenine-guanine (CAG) repeats in specific genes 
[333]. This results in extended polyQ tracts in patho-
genic proteins and induces the formation of toxic 
polyQ aggregates [333].

Huntington’s disease (HD) and spinocerebellar ataxia 
type 3 (SCA3, also called Machado-Joseph disease) are 
caused by extensive polyglutamine (polyQ) expansion of 
the huntingtin or ataxin-3 protein [334]. The VCP gene 
modifies the severity of both diseases. VCP directly binds 
expanded polyQ proteins, including mutant huntingtin, 
ataxin-1, ataxin-7, and androgen receptor [335]. Cells 
that produce aberrant polyQ proteins concentrate VCP 
in the nucleus. However, as the interaction of VCP with 

DNA repair proteins is compromised, the abundance of 
DNA double-strand breaks increases [335].

Huntington’s disease  With a prevalence of ~ 1 per 
10,000 in Western countries [336], Huntington’s disease 
(HD) is characterized by the progressive neurodegener-
ation of the caudate nucleus and putamen, parts of the 
basal ganglia [297]. Patients suffer from motor distur-
bances and cognitive decline. In rare cases, patients carry 
a combination of mutant VCP and mutant forms of hun-
tingtin (mtHtt [337]).

The mtHtt protein can have a higher affinity for VCP than 
its wild-type counterpart [121]. It recruits VCP to mito-
chondria, where the ATPase triggers mitophagy and ulti-
mately cell death [121]. VCP can also compromise mito-
chondrial function by excessive degradation of myeloid cell 
leukemia sequence 1 (MCL1), a mitochondrial outer mem-
brane protein [52]. VCP knockdown and gossypol, a non-
specific VCP inhibitor, have beneficial effects in HD models 
[52, 338]. As well, the overexpression of NPL4 and UFD1 
ameliorates the polyQ protein toxicity in yeast and mamma-
lian cells [23]. In neurons that synthesize pathogenic polyQ 
proteins, such as mtHtt or ataxin-3, VCP carries a specific 
pattern of PTMs (phospho-S612, phospho-T613, acetyl-
K614). The modifications promote aberrant VCP nuclear 
localization, histone H3 and H4 deacetylation, and compro-
mise the VCP-dependent transcriptional control [339].

Spinocerebellar ataxia type 3  The global prevalence 
of SCA3, a hereditary neurodegenerative disorder, 
amounts to 1–5 in 100,000 [340]. It is caused by an exten-
sive polyQ expansion of the protein ataxin-3 [341, 342]. 
Almost all SCA3 patients with cerebellar ataxia have dif-
ficulty speaking, eye conditions, and vestibular malfunc-
tion. Motor neuron degeneration is frequent and may 
affect upper and lower motor neurons [342].

Ataxin-3 functions as a deubiquitinase (DUB) that associ-
ates with VCP. Ataxin-3 and UFD1 compete for the asso-
ciation with VCP [28]. Thus, ataxin-3 binding reduces the 
interaction of VCP with ubiquitinated clients and the ret-
rotranslocation of ERAD substrates. Pathological polyQ 
expansion of ataxin-3 enhances VCP binding and culmi-
nates in the impairment of ERAD [28]. In addition, the 
VCP/ataxin-3 complex participates in the DNA damage 
response by removal of the E3 ubiquitin ligase RNF8 [343] 
and in the regulation of early stages of autophagy [164].

VCP disruptors
Another group of variants that are linked to neurode-
generation and VCP are represented by mutations that 
indirectly alter VCP function. Here, we refer to them as 
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VCP disruptors. For instance, G4C2 expansions in the 
C9ORF72 gene result in cytotoxic dipeptide repeat prod-
ucts, such as poly(GA) proteins. Poly(GA) aggregation 
sequesters VCP and can culminate in the onset of ALS or 
FTD [344, 345].

An alternative route to VCP disruption is the genera-
tion of new binding proteins. This scenario is illustrated 
by a mutation in ATP7A, which encodes a copper-trans-
porting ATPase [346]. The ATP7A mutation uncovers a 
UBX domain, supports a novel VCP-ATP7A interaction, 
and leads to adult-onset isolated distal motor neuropathy.

VCP as actionable target for neurodegenerative diseases?
Biomarkers
Aside from genetic testing, no dependable biomarkers 
are available to diagnose MSP1 [288, 347]. VCP muta-
tions commonly cause a relocation of TDP-43 to cyto-
plasm for MSP1. However, this is not limited to MSP1, 
but also observed for other neurodegenerative diseases.

Ethnic background, sex‑specific differences
The prevalence of VCP diseases and clinical manifesta-
tions may vary according to the ethnic background and 
sex of an individual [234, 348]. For instance, the preva-
lence of PDB is low in Asian countries when compared 
to Western populations [349]. Recent data also indicate 
sex-specific differences, at least in the context of a spe-
cific ethnic background and VCP variant [348].

Publicly accessible information on the clinical mani-
festations and other parameters of VCP disease ranges 
from case reports to large scale and systematic evaluation 
of patient data. The size of patient cohorts differs widely 
among these analyses. Individual studies assess VCP dis-
ease in multiple countries [350], or focus on Asia [229, 
234, 351–364], Europe [255, 365–370], Australia [371], 
and Hispanic [348] or African American [372] patients. 
Table S4 summarizes key results for several publications.

To date, the published work suggests that the contri-
butions of VCP mutations to neurodegenerative disease 
depend on the characteristics of the patient cohort. Thus, 
the genetic or ethnic background and the geographical 
location of patients can impact the trajectory of VCP dis-
ease. This is illustrated by VCP mutation frequencies as 
risk factors for ALS [278]. They were determined as 0.8% 
in European populations, but only as 0.3% in Asia [278]. 
Sex-specific differences are also emerging for some VCP 
variants [348]. The molecular mechanisms through which 
biological and genetic traits, ethnicity, or sex impact VCP 
disease remain largely undefined.

Pharmacological compounds, dietary intervention
Drugs and other pharmacological agents can alter the 
ATPase activity of VCP [107, 373]. This includes compounds 

that stimulate the ATPase activity of the D1 domain [107]. 
Small molecule inhibitors that bind VCP directly may 
interfere with diverse VCP activities and have side effects 
[95, 347]. Adverse effects may be tolerable if systemic VCP 
inhibition occurs over a limited period of time, for example 
to boost the elimination of cancer cells. By contrast, VCP-
associated neurodegeneration relies on long-term treatment 
to delay onset or mitigate disease progression. This scenario 
requires alternative treatment regimens. Small molecule 
protein–protein-interaction modulators are particularly 
promising, as they can target a selected fraction of the VCP 
protein interaction network [374]. Here, drug development 
could be guided by VCP complexes whose function is dis-
ease-relevant and altered by a specific VCP mutation. Adap-
tor-specific antibody fragment inhibitors are alternatives to 
small molecule inhibitors. The approach is feasible, as dem-
onstrated with antibody fragments that interfere with VCP-
p47 complex formation [375]. Small molecules or antibody 
fragments that target individual VCP cofactors may also be 
useful to enhance a set of VCP-dependent functions.

The use of pharmacological agents could be strength-
ened by personalized diet plans. Given the links of VCP 
to lipid metabolism, nutritional interventions tailored 
to the patient’s VCP mutation may delay the onset and 
pathogenesis of VCP disease.

Clinical trials and clinical studies
In May 2023, six clinical trials listed on the NIH Clinical 
Trials website were related to VCP (or p97) and neuro-
degeneration (see Table S5; [376]). Three of these trials 
were associated with ALS or pre-symptomatic ALS, one 
with MSP1 (listed as IBMPFD), one focused on behavio-
ral FTD, and one was a patient registry for rare diseases. 
Five of the studies were classified as “observational”. The 
“interventional” study on ALS patients (NCT03367650) 
included a “dietary supplement”. For none of the listed 
trials are results available on ClinicalTrials.gov.

Furthermore, the VCP inhibitors CB-5083 and CB-5339 are 
part of clinical trials for the treatment of different malignan-
cies. The two trials assessing CB-5083 have been terminated; 
one of two trials evaluating CB-5339 has been withdrawn. A 
second trial on CB-5083 (Phase 1) is listed as recruiting partic-
ipants (Table S5). As of May 2023, no additional trials related 
to both MSP1 and VCP were published by the EU, Australian, 
or WHO International Clinical Trials Registries [377–379].

Examples of other clinical trials potentially relevant 
to MSP1 are summarized below. A trial on patients 
with acute central retinal artery occlusion (JPRN-
UMIN000023979) suggests that compounds targeting 
VCP could address specific aspects of organ dysfunctions, 
especially related to the eye [380, 381]. In-depth analyses 
are needed to determine whether VCP variants that cause 
MSP1 also have VCP-dependent effects on ocular health.
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A proof-of-concept trial was conducted with patients 
suffering from sporadic inclusion body myositis [382]. 
Arimoclomol induces the heat shock response and 
had promising effects in mice overexpressing the 
human VCP mutant (A232E). A clinical trial evalu-
ated the adverse outcomes in human subjects over 
12  months (NCT00769860). It included 24 participants 
age > 50  years; 16 were treated with arimoclomol (2/16 
participants withdrew) and 8 received a placebo. Details 
on the VCP variants in the patient population were not 
provided. Overall, the trial did not reveal significant ben-
efits for inclusion body myositis when patients treated 
with arimoclomol [383].

Aside from registered trials, clinical studies also shed 
light on the diverse pathological manifestations of VCP dis-
ease. The individuals with clinical manifestations of VCP 
disease were examined for a cohort of 32 carriers of mutant 
VCP. In this patient group, 43.5% displayed cardiovascular 
complications [384]. The patients developed cardiovascular 
dysfunctions at later stages of VCP disease [384].

A link between VCP abundance and skin disease 
emerged recently [385]. For a group of 25 patients with 
psoriasis, epidermal VCP levels gradually raise from con-
trol to psoriatic skin regions [385]. The epidermis, der-
mis, and adnexa of the skin are characterized by elevated 
VCP abundance. Notably, proximal muscle weakness 
and psoriasis may manifest in the same patient [386]. To 
our knowledge, it has not been explored to which extend 
VCP disease variants play a role in skin disease.

So far, clinical trials offer only limited support for the 
hypothesis that targeting VCP variant proteins alone will 
benefit patients with VCP disease.

Care for patients with VCP disease
An in-depth discussion of patient care is beyond the 
scope of our review. Details and links to more compre-
hensive publications are provided in the section below.

VCP-related MSP1 is a rare disease. It often affects 
multiple organ and cellular systems and is heterogene-
ous with respect to disease onset and symptoms [387]. 
To date, there is no unifying concept that describes 
the role of VCP mutations in neurodegenerative dis-
eases. The VCP Standards of Care Working Group has 
developed guidelines for the diagnosis, treatment, and 
clinical surveillance of patients with VCP-associated 
disease [288, 347]. Given the complexity of the clinical 
manifestations, genetic testing remains the most reli-
able method to identify VCP mutations as the underly-
ing cause of disease. In recent years, marked progress 
has been made for all aspects of MSP1 patient care. 
Giving more weight to the ethnic background, sex, 
environmental factors, and nutritional interventions 
[387] could further improve the quality of care.

Future directions
Knowledge gaps
Despite extensive research on the role of VCP in neuro-
degeneration, considerable knowledge gaps remain to be 
addressed. The development of better theranostic strate-
gies requires the concerted effort in multiple disciplines. 
Textbox 1 lists some of the outstanding questions.

Outstanding questions

VCP biology and disease
  • Which VCP-dependent functions are directly linked to the patholo-
gies observed for VCP-induced neurodegeneration?

  • How does the “VCP code” of PTMs affect disease onset and progres-
sion? Is VCP-sumoylation relevant to the disassembly of toxic aggregates? 

  • Can the nucleocytoplasmic distribution be modulated for VCP 
mutants that fail to enter the nucleus?

  • How similar are VCP-induced inclusion bodies in muscles to aggre-
gates in the nervous system? How similar are these inclusions to stress 
granules?

  • Are inclusions generally detrimental to cell survival, or do they help 
to sequester toxic protein aggregates?

  • Inclusion bodies in the muscles of MSP1 patients are an early sign 
of disease. Do the protein aggregates spread to the nervous system, 
either through secretion or via exosomes?

  • What is the role of ciliary VCP for brain health?

  • Which VCP activities are modulated by sex?

Disease phenotypes
  • Why does MSP1 preferentially affect muscle, bone, and the nervous 
system?

  • What determines the chronological sequence of clinical manifesta-
tions in different organs and tissues?

  • How does the composition of VCP networks determine the impact 
of VCP variants on different cell types, tissues, and organs? Is the MSP1 
phenotype determined by the availability of VCP cofactors or binding 
proteins?

  • Are distinct parts of the nervous system especially vulnerable to the 
combination of a VCP mutation with specific variants of modifier gene(s)? 

  • Which VCP interacting proteins determine the onset, progression, 
or pathology of a specific VCP mutation?

Role of non-neuronal cells in MSP1-mediated neurodegeneration
  • How do VCP mutations alter the biology of glial cells in the CNS 
and PNS?

  • How do glial cells with VCP mutations contribute to the pathologies 
of MSP1?

  • What are the non-autonomous effects of VCP mutations out-
side of neurons and astrocytes?

Therapeutic interventions
  • Do VCP PTMs provide druggable targets? Is the targeting of VCP regu-
lators, such as ULK1/2, a suitable approach for a subset of VCP mutants?

  • Is the targeting of astrocytes and other glial cells a mandatory step 
to prevent neurodegeneration in MSP1 patients?

  • What are the different parameters that contribute to the heterogene-
ity of MSP1 clinical manifestations? Which are relevant to patient care?

  • Can a personalized “scoresheet” of the VCP variant, genetic modifiers, 
sex, and environmental factors instruct on optimal patient care? Can the 
“scoresheet” be used to prevent or delay disease onset or progression?

  • What dietary and other non-drug interventions can improve 
the health of MSP1 patients?
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Future studies
Based on the open questions (Textbox  1), we speculate 
on the trajectory the field of VCP disease will take in the 
short-term. To achieve the ultimate goal, better patient 

care, the VCP community has to attend to diverse topics 
(Fig.  4). In our opinion, several areas of investigation are 
critical to propel the field forward. They include -but are 
not limited to- a better understanding of VCP disease 

Fig. 4  Future directions to advance knowledge and theranostics in the field of VCP disease. The figure highlights the integrative approach 
that is driven by continuous feedback among different disciplines. Key issues that have to be addressed in the near future are depicted. They are 
related to basic research, translational research, and clinical applications. The list is not comprehensive and has to be updated on a regular basis
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heterogeneity, non-cell autonomous effects of VCP vari-
ants, and identifying new candidate targets for therapeu-
tic intervention. Moreover, as phenotypes of VCP mutants 
may vary in humans and experimental animals [388], dis-
ease models have to be improved and expanded. Other 
topics in need of attention relate to the ethnic and geo-
graphical differences of patient populations, genetic modi-
fiers, and environmental factors. Given that MSP1 is a rare 
disease, answering these questions poses a challenge.

The recommendations for VCP patient care are contin-
uously updated [288]. At the same time, it is necessary to 
boost awareness about MSP1 among medical profession-
als, patients, and their families. This is particularly urgent 
in communities where medical facilities are not available 
or difficult to access.

Finally, the complexity of MSP1 and the current 
knowledge gaps offer ample opportunity for innova-
tion. For instance, the combination of gene therapy and 
nanomedicine could advance the treatment of MSP1. In 
particular, gene silencing, gene transfer, or genome edit-
ing in muscle cells may limit the severity of myopathy. 
These approaches are promising for Duchenne muscu-
lar dystrophy [389] and ALS [390]. They can be further 
improved with inert nanocarriers that circumvent the 
adverse effects of viral vectors [391, 392]. Thus, nano-
based gene therapy could become a pioneering clinical 
application to control the pathology in the muscles and 
other tissues of MSP1 patients.

Conclusions
The links between VCP mutations and neurodegenera-
tive diseases are well-established. While inclusion bod-
ies are a hallmark of the VCP pathology, their formation, 
composition, and dynamics are far from understood. 
Aggregates associated with neurodegeneration gener-
ally develop under conditions of chronic oxidative stress. 
Most cell and animal models do not adequately mimic 
these conditions. Future studies to improve the models 
and their relevance to human disease are needed. Ideally, 
these models incorporate patient-derived cells and mul-
tiple cell types, such as neurons and different glial cells.

Much effort has been put into the development of com-
pounds that bind VCP and inhibit or activate its ATPase 
activity. However, the ubiquitous expression of the VCP 
gene and the numerous biological activities that require 
VCP argue against this strategy in the context of neuro-
degeneration. A more focused approach, illustrated by 
the targeting of VCP-cofactor complexes, may have fewer 
side  effects and better outcomes when long-term treat-
ment is necessary.

Taken together, we anticipate that a multipronged 
approach will generate novel insights into the molecu-
lar mechanisms underlying MSP1. Major advancements 

require collaborations that include basic researchers, 
clinicians, patients, and their caregivers. The effort of 
interdisciplinary and multinational teams will be man-
datory to translate new knowledge into better care for 
MSP1 patients.
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