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REVIEW

The role of NURR1 in metabolic 
abnormalities of Parkinson’s disease
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Abstract 

A constant metabolism and energy supply are crucial to all organs, particularly the brain. Age-dependent neurode‑
generative diseases, such as Parkinson’s disease (PD), are associated with alterations in cellular metabolism. These 
changes have been recognized as a novel hot topic that may provide new insights to help identify risk in the pre-
symptomatic phase of the disease, understand disease pathogenesis, track disease progression, and determine critical 
endpoints. Nuclear receptor-related factor 1 (NURR1), an orphan member of the nuclear receptor superfamily of 
transcription factors, is a major risk factor in the pathogenesis of PD, and changes in NURR1 expression can have a det‑
rimental effect on cellular metabolism. In this review, we discuss recent evidence that suggests a vital role of NURR1 
in dopaminergic (DAergic) neuron development and the pathogenesis of PD. The association between NURR1 and 
cellular metabolic abnormalities and its implications for PD therapy have been further highlighted.
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Background
Parkinson’s disease (PD) is the second most common 
neurodegenerative disease, which has increased from 
2.5 million cases in 1990 to over 6 million cases in 2016 
[1, 2]. The number of people at risk for developing PD 
is predicted to rise to 14.2 million by 2040 [3]. Environ-
mental factors in genetically predisposed individuals are 
thought to contribute to the pathogenesis of this multi-
faceted disease [4]. However, multiple mechanisms and 
pathway dysfunctions accelerate the pathogenesis of PD, 
including oxidative stress, mitochondrial dysfunction, 
cellular calcium (Ca2+) imbalance, neuroinflammation, 
and other neurotransmitter system deficits [5, 6]. The 

main neuropathological hallmarks of PD include the sub-
stantial loss of dopaminergic (DAergic) neurons within 
the pars compacta of the substantia nigra (SNpc), and the 
development of intracytoplasmic α-synuclein-containing 
Lewy bodies, resulting in diminished facilitation of vol-
untary movement [7–9].

Cellular metabolic status and mammalian gene expres-
sion interact under the critical regulation of various 
signaling pathways, transcription factors (TFs), and epi-
genetic remodelers that affect cell fate during develop-
ment [10–13]. Each cell type in the brain has a distinct 
metabolic profile and sustained cellular function over 
time; however, only a limited degree of metabolic flexibil-
ity can react to external stimuli [14, 15]. Cellular meta-
bolic changes that exceed an adaptability threshold will 
endanger brain cellular resistance and function. Meta-
bolic alterations in protein, glucose, lipid, and dopamine 
(DA) have been noticed in PD [16–18]. Growing evidence 
demonstrates that PD patients have altered unsaturated 
fatty acids (FAs), bile acid, steroid hormones, glucose, 
and amino acid metabolisms [18–21]. Changes in DA-
related metabolites in PD-derived midbrain DAergic neu-
rons have recently been reported, along with a significant 
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increase in the expression of the DA-related genes, such 
as phenylalanine hydroxylase, tyrosine hydroxylase (TH), 
catechol-O-methyltransferase, and monoamine oxidase 
A and B [17]. These findings suggest that exploring the 
metabolic abnormalities is imperative in understanding 
PD’s pathogenic mechanism.

TFs bind at a particular location and time to a spe-
cific gene sequence and regulate the expression of the 
target gene, allowing them to control the development 
processes of the cells. Nuclear receptor-related factor 1 
(NURR1) is one of these TFs required for the differentia-
tion, maturation, and maintenance of DAergic neurons 
during their development [22, 23]. In the present review, 
we first build a framework for NURR1 involvement in PD 
and then detail the participation of NURR1 in modulat-
ing metabolic states and individual metabolites to control 
the epigenetic landscape and cellular identity. Overall, 
understanding the roles of NURR1 in cellular metabolic 
abnormalities in PD could be crucial for developing 
timely and tolerable NURR1-targeting modalities for PD 
therapy.

Role of nuclear receptor‑related factor 
1 in dopaminergic neuron development 
and Parkinson’s disease
The nervous system is developed through the tremen-
dous proliferation and differentiation of neural stem 
cells. Their fate is determined by precise signal pattern-
ing and TFs that allow for the correct regionalization, dif-
ferentiation, and functional integration of new cells [24, 
25]. NURR1, as a member of the “zinc finger” TF super-
family, is expressed early in embryogenesis at E10.5 and 
is detectable throughout the life [26, 27]. The nuclear 
receptor 4A (NR4A) subfamily is comprised of three 
nuclear receptors: NUR77 (NR4A1), NURR1 (NR4A2), 
and NOR1 (NR4A3). Although the deoxyribonucleic acid 
(DNA) binding domains in the three family members of 
NR4A have high similarity, their biological functions are 
quite different [28–31]. Many organs and tissues, includ-
ing the brain, pancreas, liver, muscles, and fat, express 
the NR4A family members [31–35]. NURR1 is found in 
various central nervous system regions, including the 
cortex, hippocampus, brain stem, spinal cord, and olfac-
tory bulb [36, 37]. The Nurr1-deficient (Nurr1−/−) mice 
are unable to develop midbrain DAergic neurons and die 
shortly after birth [38]. Those mice show impaired motor 
function and significant DAergic neuron loss in the SNpc 
and ventral tegmental area (VTA) [39]. The expression of 
NURR1 in the midbrain DAergic neurons decreases with 
age, which coincides with the increased morbidity of PD 
[40, 41].

NURR1 and its transcriptional targets were down-
regulated in DAergic neurons with a high level of the 

disease-causing protein α-synuclein in the midbrain 
[42]. In  vitro, α-synuclein-induced activation of protein 
phosphatase 2A leads to inhibition of the phosphoryla-
tion activity of TH and aromatic amino acid decarboxy-
lase (AADC) [43]. Furthermore, DA content is reduced 
in cells transfected with the A53T mutant α-synuclein 
[43, 44]. Previous research in the PD mouse model found 
that Nurr1 is co-localized with TH+ neurons in the SNpc, 
VTA, retrorubral field, and olfactory bulb [45]. NURR1 
interacts with other factors to regulate the expression 
of TH, AADC, and vesicular monoamine transporter 2 
(VMAT2), which are essential in the synthesis, storage, 
and release of DA [46–49]. There is a significant corre-
lation between NURR1 activity and the stabilization of 
the NURR1 ligand-binding domain (LBD) [50]. Addition-
ally, NURR1 is a critical factor for the specification of DA 
neurotransmitter identity by activating TH gene tran-
scription [51, 52]. NURR1 mutations and polymorphisms 
that cause either reduced expression or dysfunction have 
been linked to familial and sporadic PD [53]. The deter-
minant roles of NURR1 in the DAergic neuron genesis 
and PD development lead to an opportunity to develop 
novel therapeutics.

Cellular metabolism changes in Parkinson’s disease 
and potential roles of nuclear receptor‑related 
factor 1
Neural cells are prone to cellular metabolic abnormalities 
due to their high specialization and reliance on metabolic 
balance. Here, we highlight NURR1’s role in the meta-
bolic abnormalities associated with PD.

The impact of nuclear receptor‑related factor 1 
in α‑synuclein‑mediated dopamine cellular metabolism 
impairment
α-Synuclein is a 140 amino acid protein that is ubiqui-
tously expressed in the brain, particularly throughout 
the neocortex, hippocampus, SNpc, thalamus, olfac-
tory bulb, and cerebellum, where it plays a crucial role in 
synaptic function and plasticity [54–57]. α-Synuclein in 
presynaptic terminals is unfolded but misfolds under cer-
tain conditions [55, 58]. α-Synuclein is a well-established 
presynaptic protein [57, 59], and it is initially described 
as a nuclear protein [60, 61]. Various α-synuclein spe-
cies have been identified in the nucleus of neuronal cells 
from the brains of PD patients [62–64] and in the ani-
mal and cellular models of PD [62, 65, 66]. Furthermore, 
α-synuclein significantly affects transcription and other 
cellular processes such as DNA integrity and the ER-
Golgi system [67, 68]. In  vitro, Outeiro et  al. observed 
a reduction in toxicity of accumulated high molecular 
weight α-synuclein species after relocating them in the 
nucleus [69]. Thus, the α-synuclein nuclear localization, 
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phosphorylation, and transcriptional regulation via 
DNA binding may be critical for cell homeostasis, divi-
sion, and differentiation. Unni et  al. also demonstrated 
that α-synuclein modulates DNA repair, suggesting that 
cytoplasmic α-synuclein aggregation may cause a loss of 
function, leading to increased DNA double-strand breaks 
and neuronal programmed cell death [70].

α-Synuclein is involved in several steps required to trig-
ger exocytosis in the presynaptic terminal [57]. Under 
pathological conditions, toxic α-synuclein species trigger 
the dysregulation of several synaptic proteins, leading to 
functional impairment of the presynaptic terminal in the 
brains of animal models of PD and PD patients [71–73]. 
As previously stated, α-synuclein not only negatively 
modulates the activity of enzymes responsible for DA 
synthesis, but also impairs the transport and uptake of 
DA by altering the activity of VMAT2 and the DA trans-
porter (DAT) [74–78]. The interaction of α-synuclein 
with surface DAT affects transporter function, which can 
change the synaptic availability of DA and substantially 
affect the membrane microenvironment near the trans-
porter, which may impact DA neuron homeostasis [79]. 
These events may lead to a cycle of α-synuclein accumu-
lation and dysregulated DA that leads to synaptopathy 
and neurodegeneration.

We have demonstrated that mutations in the first 
exon of NURR1 (−291Tdel and − 245 T → G) are linked 
to familial PD [53]. Furthermore, we found that NURR1 
expression was significantly reduced in the PD post-
mortem SNpc tissues with α-synuclein inclusions 
compared to age-matched healthy controls (HC) [42]. 
NURR1 expression was normal in the SNpc neurons 
without inclusions and in the hippocampal neurons of 
PD patients, demonstrating that this change is region-
specific [42]. A decrease in SNpc NURR1 expression was 
also observed in some progressive supranuclear palsy and 
Alzheimer’s disease patients [42], indicating that reduc-
ing NURR1 in DAergic neurons is linked to intracellular 
pathology in synucleinopathies and tauopathies. NURR1 
expression in the SNpc of α-synuclein homozygous mice 
significantly decreased with age [80]. Similar findings 
were achieved when the α-synuclein preformed fibril was 
injected into the putamen of non-human primates [81]. 
Furthermore, NURR1 expression was decreased in PD 
patients’ peripheral blood lymphocytes (PBLs) compared 
to HC and neurological disease controls [82]. The reduc-
tion in NURR1 expression in PBLs suggests systemic 
involvement of NURR1 in PD, which might potentially be 
used to identify patients with PD associated with central 
DAergic system impairments [82].

In addition to the critical role in the developing and 
reprogramming DAergic neurons, NURR1 has been 
shown to preserve and protect DAergic neurons in 

several animal and cellular models of PD [81, 83–85]. 
Furthermore, bexarotene, a retinoid X receptor (RXR) 
ligand that forms heterodimers with NURR1, has been 
demonstrated to co-regulate NURR1 target genes, 
including the TH receptor component [86]. This is sup-
ported by the finding that the induction of Nurr1 expres-
sion in primary DAergic neurons expressing α-synuclein 
restores the dysregulated gene functions [86].

Our recent work has demonstrated that α-synuclein 
can modulate the transcription activity of the Nurr1 pro-
moter region, between − 605 and − 418 bp, which con-
tains the nuclear factor kappa B (NF-κB) binding site [87]. 
Furthermore, overexpression of α-synuclein (wild type or 
A53T mutant) reduces the NF-κB binding quantity to the 
Nurr1 promoter, resulting in decreased transcription of 
Nurr1 [87] and potentially inducing proteasome-depend-
ent NURR1 degradation in the midbrain DAergic neu-
rons [88]. Overexpression of α-synuclein inhibits NF-κB 
expression and increases glycogen synthase kinase 3β 
(GSK-3β) protein levels in the DAergic neurons, imply-
ing that the pathological effects may be mediated by the 
NF-κB signaling pathway [89]. Ji et  al. found that pros-
taglandin E2 (PGE2) stimulation of E-type prostaglandin 
receptor 1 upregulates the expression of NURR1 via the 
activation of NF-κB signaling pathways [90], indicating 
that α-synuclein can suppress the expression of endog-
enous NURR1. Interestingly, NURR1 has a considerable 
inhibitory effect on α-synuclein transcription [91]. There-
fore, NURR1 and α-synuclein may regulate each other 
(Fig. 1A).

The interplay of Ca2+, cytosolic DA (DAcyt), and 
α-synuclein contribute to the selective vulnerability 
of SNpc neurons in PD [92], and DAergic neurons in 
SNpc also depend on Ca2+ channel pacemaking [93, 
94]. Therefore, various strategies for preventing neu-
ronal death in PD can potentially be employed, includ-
ing inhibiting Cav1.3 channel activity [95] and blocking 
the toxicity of DA-α-synuclein interactions [96]. Sulzer 
et  al. found that levodopa (L-DOPA) increases DAcyt 
in the SNpc neurons 2 to 3-folds higher than VTA neu-
rons. This response is dependent on dihydropyridine-
sensitive L-type Ca2+ channels, resulting in greater 
susceptibility of SNpc neurons to L-DOPA-induced 
neurotoxicity [92]. Additionally, in hemiparkinsonian 
rats, Steece-Collier et  al. demonstrated that genetic 
silencing of the striatal L-type Ca2+ channel prevented 
and reversed L-DOPA-induced dyskinesia (LID) [97]. 
Furthermore, Sellnow et  al. found that ectopic induc-
tion of striatal NURR1 might induce LID behavior and 
associated neuropathology [98]. Therefore, NURR1 
may play a crucial role in regulating the transcriptional 
and plasticity activities of Cav1.3 [98]. Cav1.3 activity, 
mediated by calcineurin, regulates NURR1 expression 
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[99]. Moreover, NURR1 might be vital to modulate the 
interaction of DAcyt, Ca2+, and α-synuclein, thereby 
avoiding the selective death of SNpc neurons [92, 97–
100]. Understanding this pathway may help identify 
drug targets and their future development to avoid neu-
rotoxic and synaptic plasticity changes.

Neuroinflammation processes significantly contrib-
ute to PD pathogenesis. A meta-analysis [101] reported 
that a single-nucleotide variation within the human 
leukocyte antigen locus increases the risk of develop-
ing PD, implying an immune-related susceptibility. 
Furthermore, epidemiological studies [102] revealed a 
negative correlation between the incidence of PD and 
the use of anti-inflammatory medications, particularly 
nonsteroidal anti-inflammatory drugs, supporting the 
hypothesis that inflammation may promote underly-
ing PD processes. α-Synuclein can activate microglia, 
produce inflammatory mediators, and trigger oxida-
tive stress [103–105]. The generation of inflammatory 

mediators and increased levels of free radicals can 
exacerbate α-synuclein accumulation, producing a 
vicious cycle of continuous progression in PD patho-
genesis (Fig. 1A) [105–107]. Microglia, astrocytes, and 
macrophages express Nurr1 mRNA and NURR1 pro-
tein under basal conditions and can elevate Nurr1 lev-
els when activated [103, 108–110].

According to the report by Sajiao et  al., NURR1 pro-
tects DAergic neurons from neurotoxicity and inflam-
mation via inhibiting the expression of proinflammatory 
mediators in microglia and astrocytes (Fig.  1A) [111]. 
NURR1 is also a vital component of a negative feedback 
loop in microglia and astrocytes by recruiting a core-
pressor for element-1–silencing transcription factor 
to NF-κB target genes [111]. They reported that TH+ 
DAergic neurons’ survival rate decreased in response 
to inflammatory stimuli during Nurr1-deficiency [111]. 
Oh et  al. found that NURR1 may exert its anti-inflam-
matory effects through modulating the expression of 

Fig. 1  NURR1 roles in the metabolism of α-synuclein, lipids, glucose, and mitochondria. Sharp arrows (positive regulation), rounded arrows 
(negative regulation) (A) α-Synuclein, and NURR1 have a detrimental impact on each other. α-Synuclein promotes inflammatory mediators and 
free radicals, and they, in turn, exacerbate α-synuclein accumulation, creating a vicious cycle, and NURR1 could interrupt this vicious cycle. B 
NURR1 activates GLUT4 transcription and induces genes involved in glucose and glycogen metabolism; Simultaneously, NURR1 expression could 
be inhibited by high glucose. Fasting and glucagon treatment induce Nurr1 expression (C) NURR1 in DAergic neurons positively regulates many 
nuclear-encoded mitochondrial genes and protects cells against the mitochondrial membrane and reactive oxygen species (D) Activating NURR1 
promotes the oxidation of FAs, also up-regulates FABP5 expression. Furthermore, unsaturated FAs activate transcriptional function of NURR1. NURR1 
expression and nuclear translocation are increased in response to a lipotoxic insult of palmitate. Abbreviations: NURR1: Nuclear receptor-related 
factor 1; FABP5: Fatty acid-binding protein 5; GLUT: Glucose transporter; Pygm: Phosphorylase glycogen muscle; Phka1: Phosphorylase kinase α 1; 
Pgam: Phosphoglycerate mutase 2; PGE2: Prostaglandin E2; NFR1,2: Nuclear respiratory factors 1 and 2; PGC-1α: Peroxisome proliferator-activated 
receptor-gamma coactivator1-alpha
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RAS guanyl-releasing protein 1 in lipopolysaccharide 
(LPS)-induced inflammatory cell model [112]. Enhanc-
ing NURR1 expression has been reported to reduce oxi-
dative stress and protect DAergic neurons by decreasing 
apoptosis-related proteins and increasing antioxidant 
proteins [113, 114]. As a result, scavenging free radicals 
and regulating the generation of inflammatory mediators 
is one of the keys to preventing and delaying the progres-
sion of PD.

These findings imply that synuclein pathological 
changes may be driven by at least part of the cellular 
metabolic pathogenesis of PD. NURR1 is one of the tar-
gets directly or indirectly affected by the inclusion bod-
ies’ pathological changes in PD. NURR1 may potentially 
protect DAergic neurons from α-synuclein in various 
ways, thereby delaying or blocking the progression of PD 
neuropathology.

Regulating effects of nuclear receptor‑related factor 1 
in the altered energy metabolism of Parkinson’s disease
The brain represents ~ 2% of the bodyweight of the aver-
age adult human, but it consumes 20% of the daily energy 
source [115, 116]. Given that one of the common features 
of PD pathogenesis is an energy deficit and decreased 
adenosine triphosphate (ATP) levels, oxidative phospho-
rylation and glycolysis could be critical pathological and 
therapeutic avenues for this neurodegenerative disease 
[117–121]. Neurons primarily rely on oxidative phospho-
rylation in mitochondria to meet such energy needs, with 
glycolysis accounting for a tiny portion of their energy 
supply [122]. Even though PD’s main metabolic patholog-
ical drive is from SNpc oxidative phosphorylation, there 
is increasing information on PD’s cortical brain meta-
bolic pathology [123–125]. DA-deficiency in the SNpc 
causes an imbalance in both the indirect (inhibitory) and 
direct (activating) pathways of the cortico–basal ganglia–
cortical circuit, which may lead to hypokinesia in PD 
[126–129]. Consequently, several imaging studies have 
demonstrated changes in brain metabolism in PD, and 
in the early stages of the disease, the cortex may exhibit 
a widespread low-metabolic state [130, 131]. Further-
more, lipoxidation, glycoxidation, and lipid peroxidation 
markers are elevated in the cerebral cortex of PD patients 
[132].

Human SNpc DAergic neurons have an exuberant and 
highly arborized axonal arborization, with upwards of a 
million neurotransmitter release sites per SNpc DAer-
gic neuron [133, 134]. This characteristic can poten-
tially inflict a significant bioenergetic load on these cells 
and subject them to a progressive elevation of oxida-
tive stress [135, 136]. Additionally, the study by Giguère 
et  al. found that SNpc DAergic neurons have 2-fold 
greater axonal arborization and are more susceptible to 

a 6-hydroxydopamine (6-OHDA) lesion in mice with the 
selective deletion of DA D2 receptor [137]. Several stud-
ies have implicated mitochondrial dysfunction, and cel-
lular bioenergetic alterations as an underlying cause of 
PD [138, 139]. DAergic neurons demand more energy 
than other neuronal cell types [140, 141], rendering them 
more susceptible to mitochondrial dysfunction and, ulti-
mately, cell death [142, 143]. Defects in mitochondrial 
respiration are corroborated by lower glucose consump-
tion in PD patients [144] and lower pyruvate oxidation 
in PD patients’ fibroblasts [145], indicating lower acetyl-
CoA entry into the tricarboxylic acid (TCA) cycle [144]. 
Mitochondrial respiration abnormalities may inhibit 
complex I nicotinamide adenine dinucleotide (NADH)-
ubiquinone reductase of the electron transport chain 
(ETC), which might play a role in the pathogenesis of PD 
[146].

Role of nuclear receptor‑related factor 1 in glucose 
metabolism of Parkinson’s disease
Glycolysis is one of the primary processes that glucose 
provides energy, and abnormal glucose metabolism is 
critical in PD’s molecular mechanism [147, 148]. Over-
expression of α-synuclein along with paraquat exposure 
leads to increased glucose accumulation, impaired gly-
colysis activity, and mitochondrial respiration [149]. Glu-
cose transporter (GLUT) inhibition prevents α-synuclein 
from potentiating paraquat toxicity. Furthermore, inhi-
bition of the pentose phosphate pathway (PPP) pro-
tects against this synergistic toxicity [149]. Apart from 
its essential role in antioxidant defense and nucleic acid 
synthesis, PPP provides nicotinamide adenine dinucleo-
tide phosphate for fatty acid and cholesterol biosynthesis 
[149–151].

Low expression of PPP enzymes and an inability to 
build antioxidant reserves are the early events in the 
development of sporadic PD, and mitochondrial damage 
in PD may be a direct result of PPP dysregulation [151]. 
α-Synuclein plays a vital part in altered glucose metabo-
lism by PPP [151]. Glucose-6-phosphate dehydroge-
nase (G6PD), the rate-limiting enzyme of PPP, is found 
throughout the body, and its expression and activity vary 
over a 10-fold range, with the highest level seen in the 
brain [152, 153]. The expression and activity of G6PD 
were increased when LPS was used in vitro and in vivo 
PD models, and this increase is linked to microglial acti-
vation and DAergic neurodegeneration [150]. G6PD 
knockdown or inhibition reduced the LPS-induced reac-
tive oxygen species (ROS) over-production and NF-кB 
activation, thereby reducing microglial activation [150, 
154]. These findings demonstrate that G6PD has a role 
in PPP dysfunction and neuroinflammation, leading to 
DAergic neurodegeneration.
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Epidemiological evidence suggests a link between dia-
betes and PD, with hyperglycemia as one of the factors 
in neurodegeneration of the nigrostriatal pathway in PD 
[155, 156]. In addition to hyperglycemia, emerging evi-
dence implies that insulin resistance in the brains of PD 
patients and impaired brain insulin signaling are poten-
tial contributors to PD pathogenesis [157]. In support 
of this, there is a downregulation of the insulin recep-
tor in the SNpc and an increase in insulin resistance in 
patients with PD [158–160]. The activation of insulin 
signaling can modulate the degradation of α-synuclein 
and inhibit α-synuclein fibril formation by activating 
the insulin-degrading enzyme [161], which is supported 
by the fact that reversing insulin resistance can prevent 
the α-synuclein-induced toxicity [162]. In agreement 
with the effect of insulin signaling, postmortem analysis 
found that protein kinase B or Akt (PKB/AKT), a serine/
threonine kinase, decreased in PD patients’ brains [163]. 
The inhibition of AKT signaling exaggerates DAergic cell 
death [164, 165], providing a further mechanistic link 
between impaired insulin signaling and PD. AKT phos-
phorylates NURR1 at Ser347, increasing protein stability 
[166]. Thus, the defective insulin signaling appears to be 
at the crux of insulin resistance and PD pathogenesis.

High glucose exposure in a mouse model of diabetes 
reduces NURR1 expression and nuclear translocation in 
Müller cells [167]. On the other hand, NURR1 agonists 
inhibit Müller cell activation and retinal ganglion cell 
loss [167, 168]. Furthermore, downregulation of NURR1 
promotes high glucose-induced Müller cell activation by 
upregulating the NF-κB/Nucleotide-binding oligomeri-
zation domain-like receptor protein 3 (NLRP3) inflam-
masome axis [167, 169]. NURR1 agonists may have 
significant anti-inflammatory and neuroprotective effects 
on Müller cells in diabetic retinopathy [167]. Expression 
of NURR1 and GSK-3β are downregulated in the periph-
eral blood mononuclear cells (PBMCs) of type-2 diabetes 
(T2D) patients [168]. Furthermore, high levels of proin-
flammatory cytokines and low NR4A expression cause 
insulin resistance by inhibiting the expression of GLUT 
and the phosphorylation of insulin receptors [168]. Long-
term insulin resistance contributes to hyperglycemia 
and hyperlipidemia, further downregulating NURR1 
expression and resulting in a vicious cycle during T2D 
pathogenesis [168]. Furthermore, NLRP3 inflammasome 
activation increases in patients with T2D [170]. There-
fore, the NURR1/NF-κB/NLRP3 inflammasome might be 
a potential pathway by which NURR1 regulates glucose 
metabolism, which is still an open field for research.

NURR1 activates GLUT4 transcription in skeletal mus-
cle, and NURR1 overexpression strongly induces the 
expression of genes involved in glucose and glycogen 
metabolism, such as phosphorylase glycogen muscle, 

phosphorylase kinase α 1, and phosphoglycerate mutase 
(Fig.  1B) [171]. Nurr1 overexpression in skeletal mus-
cle enhances glucose uptake, utilization, and storage. In 
contrast, fasting and glucagon treatment induces Nurr1 
expression in hepatic cells [32, 172]. Treatment of the 
PBMCs with high glucose and palmitic acid inhibits 
NURR1 expression in a dose- and time-dependent man-
ner [168]. Similarly, the NURR1 agonist, amodiaquine, 
enhanced glucose tolerance and restored insulin levels 
to normal in obese mice [32]. Although the underly-
ing mechanisms are unknown, NURR1 plays a function 
in the physiological process of glucose metabolism that 
helps protect the DAergic neuron from the detrimental 
consequences of metabolic disturbances, thereby pre-
venting cell death. In addition, it may promote searches 
to find novel therapeutic targets from a metabolic 
perspective.

Association of nuclear receptor‑related factor 1 
in mitochondrial dysfunction of Parkinson’s disease
It is well understood that mitochondria play a vital role 
in aerobic glycolysis. Mitochondria are the cells’ energy 
producers and are critical intercellular linkers with other 
organelles. Mitochondria control energy metabolism, 
biosynthesis, immunological response, and cell turnover 
by interacting with the endoplasmic reticulum, peroxi-
somes, and nucleus through signal transduction, vesicle 
transport, and membrane contact sites [173]. ETC is a 
critical component of mitochondrial energy produc-
tion. During oxidative phosphorylation, NADH provided 
by the TCA cycle is oxidized and provides electrons to 
the ETC [174, 175]. Metabolic alterations and inactiva-
tion of the ETC complex are characteristics of PD; thus, 
poor energy metabolism is linked to PD [16, 149]. A large 
meta-analysis of genome-wide gene expression studies 
has reported that genes encoding oxidative phosphoryla-
tion proteins correspond to the functional category of 
most of the deregulated genes in the remaining DAer-
gic neurons in PD [176]. NURR1 works with numerous 
genes associated with the DAergic neuron phenotype, 
including DA metabolism, neurotransmission, axonal 
development, mitochondrial function, and cell survival 
[177–179].

NURR1 regulates numerous nuclear-encoded mito-
chondrial genes positively, with over 90% of the genes 
creating down-regulated respiratory chains in Nurr1-
ablated DAergic neurons [179]. It has been proposed 
that decreased NURR1 activity is linked to mitochon-
drial malfunction, which accelerates neurodegen-
eration in PD [180]. Furthermore, NURR1 regulates 
various proteins that play a role in mitochondrial 
functions, including pituitary homeobox  3 and Wnt/
β-catenin, which regulate DAergic neurogenesis [22, 
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85, 181–183]. On the other hand, several studies have 
demonstrated that NURR1 protects cells by regulat-
ing mitochondrial genes such as sodium oxide dis-
mutase 1 and mitochondrial translation elongation 
factor [177]. Recent research has also revealed that 
NURR1 could protect cells against the potential tox-
icity of mitochondrial membrane and intracellular 
ROS (Fig. 1C) [184].

Peroxisome proliferator-activated receptor-gamma 
coactivator1-alpha (PGC-1α) and nuclear respira-
tory factors 1 and 2 (NRF1 and NRF2) are fundamen-
tal transcriptional regulators of energy metabolism, 
acting as suppressors of ROS in neurons [185–187], 
as well as critical regulators of nuclear-encoded 
mitochondrial genes [187, 188]. Increased methyla-
tion of PGC-1α in the SNpc of α-synuclein mice can 
lead to decreased PGC-1α expression and mitochon-
drial content [189]. Previous research has shown 
that PGC-1α can be induced by parathyroid hor-
mone, resulting in coactivation of the Nurr1 pro-
moter activity in the osteoblast, suggesting another 
potential functional connection between NURR1 and 
PGC-1α, which may protect cells against the poten-
tial toxicity of oxidative stress derived from mito-
chondrial dysfunction [190].

Apart from fundamental roles in generating energy 
and the metabolism of lipids and amino acids, mito-
chondria is also a key player in maintaining Ca2+ 
homeostasis [191]. Identification of the molecular 
components of the mitochondrial Ca2+ uniport com-
plex has provided crucial insight into the function 
mitochondrial Ca2+ influx plays in energy produc-
tion under an increased workload and, paradoxically, 
in disease development, such as neurodegeneration 
[192, 193]. L-type Ca2+ channel activation is critical 
for spontaneous DAergic neuron pacemaking, which 
is then accompanied by sustained Ca2+ entry through 
L-type channels [194, 195]. Ca2+ entry via L-type 
channels increases mitochondrial oxidative stress, 
which is amplified by deglycase-1 gene deletion [196, 
197]. Recent studies in PD zebrafish and drosophila 
models have shown that lowering high mitochon-
drial Ca2+ levels could improve neurodegeneration 
[198, 199]. To summarize, NURR1 may interact with 
other TFs essential for expressing nuclear respiratory 
genes, such as NRF1 and NRF2, or with the transcrip-
tional coactivator PGC-1α, which serves as a master 
regulator of mitochondrial biogenesis and cellular res-
piration. Mitochondria and NURR1 metabolic involve-
ment remain poorly understood; future studies are 
needed to determine the NURR1 metabolic pathways 
and the role of oxidative phosphorylation in NURR1-
ablation and overexpression models.

Involvement of nuclear receptor‑related factor 1 
in the altered lipid metabolism of Parkinson’s disease
The human brain has the second-largest lipid content 
after adipose tissue. Lipids help maintain brain activities, 
such as synaptic function, making it highly vulnerable to 
lipid metabolic disorders [200, 201]. Lipids are involved 
in a multitude of aspects of PD pathology, including 
unique cytotoxic interactions with α-synuclein [202, 203], 
mutations in enzymes involved in lipid metabolism genes 
that increase the risk of PD development [204, 205], 
lipid pathway alterations [206, 207], and lipid involve-
ment in oxidative stress and inflammation [208]. Disrup-
tion of the lipid membrane is one potential mechanism 
of cytotoxicity. Studies have shown that the toxicity of 
α-synuclein and docosahexaenoic acid (DHA) oligomers 
to cells is partially due to the disruption of the integrity 
of the lipid membrane [20, 202]. Mutations in glucocer-
ebrosidase and sphingomyelinase 1 lead to a loss of glu-
cocerebroside function and an increase in α-synuclein 
aggregation, subsequently augmenting the development 
of PD [209, 210]. Changes in membrane lipids have been 
observed in both affected and unaffected regions of PD 
patients’ brains and various experimental models of PD 
[211, 212], implying that changes in lipid metabolism or 
metabolic pathways may precede the development of PD. 
αSynuclein has some structural similarities with the class 
A2 lipoproteins and fatty acid-binding protein (FABP), 
which may play an important role in lipid metabolism 
[213–215].

Fatty tissue highly expresses NR4A members during 
the early stages of adipocyte differentiation [216]. Nurr1 
is upregulated during extreme obesity and normalized 
after fat loss [217]. Furthermore, activated NURR1 can 
promote the oxidation of FAs to supply ATP, which could 
be regulated by PGE2, a critical transcriptional integra-
tor that allows crosstalk between the PGE2 and FAs oxi-
dation pathways [218]. Interestingly, Briand et  al. found 
that palmitate lipotoxic insult increased NURR1 expres-
sion and nuclear translocation in the insulinoma cell 
line, Min6 [219], implying the involvement of NURR1 
in at least some FAs induced transcriptional responses. 
These results contradict the previously mentioned study 
in which palmitic acid could reduce the expression of 
NURR1 in PBMCs from patients with T2D [168]. It 
is worth noting that Nurr1 overexpression in purified 
human islets decreased the expression of a cluster of 
genes that are involved in inflammation control [219]. 
Decreased NURR1 and GSK-3β phosphorylation expres-
sion levels in PBMCs were negatively correlated with 
interleukin-6 and tumor necrosis factor-α levels [168]; 
whether this downregulation results from a long-term 
adaptive and protective response to glucose homeosta-
sis remains to be determined by studying tissue-specific 
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gene knockouts. Furthermore, the unsaturated FAs can 
directly bind to NURR1 and activate its transcriptional 
function (Fig. 1D) [220, 221].

FABP, also known as intracellular lipid chaperon, may 
dictate the destiny of lipids that coordinate lipid traffick-
ing and signaling and are intimately linked to metabolic 
and inflammatory pathways [222]. FABP5 and NURR1 
are expressed in the mouse brain; however, they are not 
co-localized in basal conditions and are both induced 
in response to stress stimuli such as brain injury, sei-
zure, or inflammation [110, 223–225]. In HEK293 cells, 
NURR1 increases retinoic acid levels by upregulating 
FABP5-induced signaling of peroxisome proliferator-
activated receptors and activating DHA-induced RXR 
[223]. All these findings suggest that NURR1 can influ-
ence the signaling of other nuclear receptors by regulat-
ing the expression levels of FABP5. Moreover, in vivo and 
in vitro, HX600, a synthetic agonist of NURR1/RXR, can 
reduce microglia-expressed proinflammatory mediators 
and prevent inflammation-induced cell death [226]. As a 
result, NURR1/RXR may play a dual role in PD, provid-
ing both neuroprotection from inflammation and symp-
tomatic relief through upregulation of TH, AADC, and 
guanosine-5′-triphosphate cyclohydrolase I transcription 
and an increase in striatal DA level [227].

Clinical and experimental evidence suggests that ster-
oid hormones, such as estrogen [228], progesterone [229], 
and thyroid pituitary axis hormones [230, 231], have a role 
in the pathogenesis of PD. Additionally, NURR1 regulates 
the synthesis of hormones, including aldosterone in the 
adrenal cortex [232, 233], osteocalcin in osteoblasts [234], 
and lactotropes in the female pituitary [235]. Although 
previous research has suggested that NURR1 may regu-
late some hormone metabolisms, it is unclear if NURR1’s 
role in hormone metabolism impacts PD. Understanding 
the molecular mechanisms of their involvements in PD 
would enable researchers to better explore the pathomet-
abolic processes and signalings, which may elucidate tai-
lored therapeutic targets for this devastating disease.

Nuclear receptor‑related factor 1‑targeting 
therapy for Parkinson’s disease
Despite the extensive research breakthroughs, the cur-
rent treatments for PD are primarily symptomatic relief, 
and there are no therapies available that can prevent 
or delay disease progression. It will be a big challenge 
to develop disease-modifying and mechanism-based 
approaches, although several preclinical investigations of 
targeted molecular therapeutics, for example, have been 
conducted with encouraging findings [236, 237].

A growing body of evidence from in vitro and in vivo 
studies has demonstrated that NURR1-activating com-
pounds, NURR1 agonists, and Nurr1 gene therapy can 

enhance DA neurotransmission and inhibit the micro-
glial and astrocytic production of neurotoxic mediators 
[111, 184, 238], thereby protecting DAergic neurons from 
cell injury [238–240]. Using cell-based assays, Kim et al. 
found that three NURR1 agonist compounds among food 
and drug administration-approved drugs sharing an iden-
tical chemical scaffold targeting the NURR1 LBD can be 
exploited as a potential mechanism-based neuroprotec-
tive therapy for PD [84]. Importantly, these compounds 
significantly alleviate behavioral abnormalities in the 
lesioned 6-OHDA rat model of PD without any inducing 
symptoms of dyskinesia-like behavior [84].

Moreover, NURR1 modulators targeting RXR and 
the Wnt/β-catenin pathway may enhance the effects of 
NURR1-based therapies in PD [86, 241–244]. In a suba-
cute mouse model of 1-Methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine hydrochloride-induced PD, the herbal 
extract consisting of Bupleuri Radix, Moutan Cortex 
Radicis, and Angelica Dahuricae resulted in recovery 
from movement impairment [245]. This herbal extract 
is shown to upregulate NURR1 expression and conse-
quently increase DA level, DAergic neurons, and fibers in 
the nigrostriatal projection [245].

Although the implications of NURR1 in PD treatment 
have not yet been thoroughly evaluated, identifying its 
molecular mechanisms in DAergic neuron development 
and cellular metabolic function may eventually help to 
develop individualized treatments aiming at the resto-
ration of functional integrity of disease-specific brain 
pathology and reverse the decline of DAergic function 
in PD. Another promising strategy is identifying selec-
tive and safe NURR1 agonists to support DAergic neuron 
functions and reduce neuroinflammatory activity.

Conclusion and perspective
Even though research on the involvement of NURR1 
in DAergic neurons began more than 20 years ago, a 
recent surge of evidence indicates that it plays a criti-
cal role in embryonic development and cellular metab-
olism. The altered metabolic state of PD patients may 
result in the downregulation of NURR1 expression, 
which increases the deposition of α-synuclein, and pro-
motes the formation of abnormal cellular metabolism, 
thereby culminating in a vicious circle. The restoration 
or enhancement of NURR1 expression and function 
may disrupt this cycle, prevent cellular metabolic disor-
ders, and delay the progression of PD. NURR1-related 
developmental and cellular metabolism modulation 
may provide crucial new therapeutic insight for PD. At 
the current stage of PD research, the exact mechanism 
of NURR1 in neuronal development, cellular metabolic 
disorders, and PD pathogenesis is still not fully under-
stood, and future studies to clarify this are required.
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