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Abstract 

Modulation of basic biochemical and physiological processes by the circadian timing system is now recognized as 
a fundamental feature of all mammalian organ systems. Within the central nervous system, these clock-modulating 
effects are reflected in some of the most complex behavioral states including learning, memory, and mood. How the 
clock shapes these behavioral processes is only now beginning to be realized. In this review we describe recent find-
ings regarding the complex set of cellular signaling events, including kinase pathways, gene networks, and synaptic 
circuits that are under the influence of the clock timing system and how this, in turn, shapes cognitive capacity over 
the circadian cycle. Further, we discuss the functional roles of the master circadian clock located in the suprachi-
asmatic nucleus, and peripheral oscillator populations within cortical and limbic circuits, in the gating of synaptic 
plasticity and memory over the circadian cycle. These findings are then used as the basis to discuss the connection 
between clock dysregulation and cognitive impairments resulting from Alzheimer’s disease (AD). In addition, we 
discuss the conceptually novel idea that in AD, there is a selective disruption of circadian timing within cortical and 
limbic circuits, and that it is the disruption/desynchronization of these regions from the phase-entraining effects of 
the SCN that underlies aspects of the early- and mid-stage cognitive deficits in AD. Further, we discuss the prospect 
that the disruption of circadian timing in AD could produce a self-reinforcing feedback loop, where disruption of 
timing accelerates AD pathogenesis (e.g., amyloid deposition, oxidative stress and cell death) that in turn leads to a 
further disruption of the circadian timing system. Lastly, we address potential therapeutic approaches that could be 
used to strengthen cellular timing networks and, in turn, how these approaches could be used to improve cognitive 
capacity in Alzheimer’s patients.
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Background
The circadian timing system is an evolutionarily con-
served cell-autonomous process that creates a daily 
rhythm with a period of approximately 24 h. Within 
mammals this clock timing process is distributed through 

all organ systems and most cell types, and recent work 
has revealed that the timing properties of these cellular 
clocks is regulated by the entraining effects of the mas-
ter circadian oscillator located in the suprachiasmatic 
nucleus (SCN) of the hypothalamus.

To begin to understand the fundamental architecture 
of the circadian timing system, it is instructive to start 
with a deconstruction of timekeeping within the SCN at 
a molecular, cellular and systems level. The SCN is com-
posed of approximately 10,000 GABAergic neurons. If 
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one were able to peer inside an SCN neuron and moni-
tor the mechanisms that underlie the circadian timing 
system, they would observe an interlocking set of tran-
scriptional and post-translational feedback/regulatory 
processes that are centered on the daily oscillation in 
the expression of the period (per1 and per2) and cryp-
tochrome (cry1 and cry2) genes. The rhythmic regula-
tion of per and cry gene transcription is driven via an 
E-box-binding heterodimeric basic helix-loop-helix tran-
scription factor formed by CLOCK (or NPAS2: [1]) and 
BMAL1 (brain and muscle ARNT-like protein 1, also 
called MOP3) [2, 3]. As their cytoplasmic concentrations 
rise PER and CRY proteins dimerize and translocate to 
the nucleus, where they function as potent negative reg-
ulators of CLOCK-BMAL1-mediated transcription. A 
daily release from the repressive effects of PER/CRY is 
mediated by the progressive phosphorylation of PER1/2 
by casein kinase 1ε and δ, which tags PER proteins for 
ubiquitin-targeted degradation [4, 5], and by CRY1/2 
protein degradation via the SCF/Fbxl3 ubiquitin ligase 
complex [6, 7]. One full cycle of PER and CRY expression 
(transcriptional activation followed by feedback repres-
sion) defines the circadian period. Consistent with this 
idea, genetic deletion of Bmal1 or the double deletion of 
Cry1/Cry2, or Per1/Per2 leads to clock arrythmia [8–10]. 
Further the length of the ‘circadian’ cycle can be regulated 
by affecting the functional properties of CK1 or FBXL3 
[11]. For example, gain-of-function mutations that 
increase CK1 activity, destabilizes PER1/2, thus result-
ing in a shortening of the clock period [5, 12]; conversely, 
pharmacological approaches that reduce CK1 activity 
results in a slowing of the clock transcriptional feedback 
loop [13]. Output from this Clock/Bmal1-driven tran-
scriptional feedback loop underlies the expression of cir-
cadian clock-controlled output genes; in fact, across the 
body, organ-specific profiling has shown that ~ 43% of 
the transcriptome is under the control of this transcrip-
tional circuit [14] (Fig. 1).

In addition to this primary clock timing loop, an 
interlocking secondary transcriptional feedback loop 
is centered on the rhythmic expression of transcription 
repressors Rev-erbα (Nr1d1) and Rev-erbβ (Nr1d2), 
which compete for binding at the retinoic acid-related 
orphan receptor (ROR)-response element (RRE) with 
the transcriptional activators RORα, RORβ and RORγ. 
These primary and secondary transcriptional loops 
intersect at two points: 1) CLOCK and BMAL1 driving 
the rhythmic expression of Rev-erbs, and 2) rhythmi-
cally expressed Rev-erbs competing with RORs at RREs 
in the promoter of Bmal1, which underlies the daily 
rhythm in Bmal1 expression [15, 16]. The disruption 
of Rev-erbα/β expression (via both gene knockout- and 
knockdown-based approaches) leads to loss of Bmal1 

rhythms and a marked disruption in clock timing (both 
within the SCN and in peripheral oscillator popula-
tions) [16, 17]. In addition, through the direct clock-
regulated rhythmic drive at the RRE, Rev-erbα/β have 
been shown to play a major role in regulating rhythmic 
expression of clock controlled genes, including those 
that play a role in metabolism and inflammation [18] 
(Fig. 1).

Consistent with the idea that the SCN serves as the 
master clock, the selective disruption of SCN timing, 
either through tissue lesioning-based approaches, or 
through the genetically-based abrogation of the core 
clock transcriptional feedback loop, leads to a loss 
of clock timing properties (i.e., circadian arrythmia), 
which manifests at the level of both basic systems-level 
physiology, including melatonin release, adrenal corti-
costerone output and core body temperature as well as 
behavioral processes, including locomotor activity, and 
sleep [19–25]. Together, these observations support the 
long-standing idea that the SCN functions as the mas-
ter pacemaker.

Clock timing cues that emanate from the SCN are 
relayed via efferents that project largely within the 
hypothalamus (e.g., to the paraventricular nucleus, 
dorso-medial nucleus, preoptic area, and the subpara-
ventricular zone), with limited projections to extrahy-
pothalamic targets, including the paraventricular 
nucleus of the thalamus, bed nuclei of the stria termi-
nalis, the vascular organ of lamina terminalis and the 
lateral septal area [26–30] (Fig.  2). These projection 
pathways have been implicated in the clock regulation 
of diverse physiological processes, including, sleep, 
melatonin synthesis, feeding, reproduction, memory 
and even aggressive behavior [31–34].

Through its effects on pituitary output and the auto-
nomic nervous system, the SCN imparts a daily rhythm 
on the physiological properties of most, if not all, periph-
eral organ systems [35, 36]. For example, a daily rhythm 
in sympathetic nerve tone underlies the circadian rhythm 
in cardiovascular activity (e.g., blood pressure and heart 
rate) and respiratory function; likewise, through both 
pituitary and autonomic output, the SCN clock gates the 
release of glucocorticoids from the adrenal cortex [37]. 
Confirmation of the central role of the SCN in peripheral 
organ rhythms has been shown in a number of studies 
where SCN lesioning and SCN-targeted core clock gene 
deletion approaches lead to a damping and, ultimately, 
a loss of circadian output from peripheral organs [38–
41]. Notably, this loss of clock-gated output is thought 
to largely result from a desynchronization of peripheral 
oscillator populations: as such, the SCN plays a key role 
in maintaining robust, entrained rhythms in peripheral 
organ oscillator populations [42, 43].
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Circadian timing in the CNS, with an emphasis on cortical 
and limbic regions
Beyond the SCN, clock timing properties have been 
detected throughout the CNS in both neuronal and 
non-neuronal cell populations. For example, protein 
profiling, along with RNA-based profiling have shown 
that rhythms in core clock genes including period and 
cryptochrome genes are detected within neocortical and 
limbic structures (i.e., the hippocampus and amygdala) 
[44–48]. Further, recent in  vivo based imaging that uti-
lized a cry-driven fluorescent protein approach revealed 
that hippocampal CA1 neurons exhibit marked oscilla-
tory capacity [49]. Consistent with the idea that the SCN 
regulates oscillator capacity within the CNS, a number of 
studies have shown that the rhythm-generating ability of 

cortical and limbic circuits requires input, in the form of 
an entrainment cue, from the SCN.  For example, Rath, 
et al. showed that the rhythmic expression of core clock 
genes within the cortex is lost when the SCN is lesioned 
[46]. Interestingly, the output signal from the SCN that 
drives the rhythm generating capacity of cortical and lim-
bic circuits, appears to be mediated by a combination of 
synaptic projections from the SCN to the lateral septum 
[50], and an SCN-driven daily oscillation in glucocorti-
coids (GC) that are released from the adrenal gland. With 
respect to the role of GC in cortical rhythms, several 
studies have shown that adrenalectomy in rats result in 
a damping/loss of clock gene rhythms within the cortex 
and limbic structures [51–53]; further, the pharmaco-
logical inhibition of the NR3C1 glucocorticoid receptor 

Fig. 1  Transcription feedback loops that form the basis of the circadian timing system. The red box denotes the feedback loop centered on the 
rhythmic expression of period and cryptochrome. The blue box denotes the feedback loop centered on the rhythmic expression of Bmal1 and 
Rev-Erbα/β. The orange box denotes rhythmic drive that is conferred to core clock-regulated genes (CCGs) via the Bmal1/Clock complex, and via the 
competitive interaction between Rev-Erbα/β and RORα/β/γ
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disrupted the daily rhythm in hippocampal LTP [54]. The 
process by which rhythmic release of GC drives clock 
gene rhythms appears to be mediated, at least in part, via 
a transcriptional mechanism in which GC drives gluco-
corticoid responsive element- (GRE) mediated expres-
sion of core clock genes [55]. Whether the induction of 
core clock genes by GC regulates circadian rhythms by 
enhancing cellular oscillatory capacity or by maintain-
ing the entrainment of cellular clocks is not known. Thus, 
the rhythm in GC appears to be a key conduit by which 
the SCN provides a daily timing cue to cortical and lim-
bic circuits. Notably, this GC-based clock gene oscillator 
model does not appear to be specific to the CNS; rather, a 
number of studies have shown that GC play a key role in 
maintaining clock rhythms and entrainment in a number 
of peripheral organ systems [55–57]. Interestingly, the 
phasing of forebrain clocks can also be influenced by time 
cues that function independently from the SCN. Along 
these lines a ‘misaligned’ feeding schedule, in which mice 
are allowed access to food only during the daytime, led 
to an inversion of the phasing of hippocampal oscillators 
(i.e., per2 levels peaked during the daytime rather than 
the night) [58, 59], whereas no effect on SCN clock phase 

was observed [58]. Collectively, these data indicate that 
1) the SCN clock is critical for robust system-wide fore-
brain rhythms, and 2) the SCN does not have an ‘iron-
grip’ over forebrain oscillators-as such, this opens-up 
forebrain clocks to an array of physiological (and poten-
tially, pathophysiological) influences that could alter the 
underlying functional properties of cortical and limbic 
circuits.

Clock gating of cognition
Numerous studies in both invertebrate and vertebrate 
model systems have shown that cognitive processing is 
gated over the circadian cycle. For example, the clock has 
been shown to modulate the efficiency of memory forma-
tion and recall [60–63]. Further, memory retrieval is dis-
rupted when the temporal organization of clock timing 
is compromised. Along these lines, shifting of the light/
dark cycle, which leads to the disruption/desynchroni-
zation of the circadian timing system, triggers a marked 
deficit in the recall of spatial tasks and in the retention/
retrieval of active and passive avoidance tasks [64–67]. 
Given the large number of reviews that have comprehen-
sively described the connection between clock timing 

Fig. 2  The SCN master clock: major efferents within the CNS, and clock-gated peripheral organ systems. Black arrows denote direct synaptic 
targets of the SCN. Red arrows denote cortico-limbic brain regions that are under the indirect control of the SCN, either via output from the lateral 
septal area (LS), or via glucocorticoid (GC) release from the adrenal gland. Blue arrows denote SCN output via the hypothalamic pituitary axis (HPA) 
and the autonomic nervous system (ANS) that gates the inherent oscillatory capacity of peripheral organs. The brown arrow denotes the direct, 
monosynaptic, input to the SCN from the retina. sPVZ: subparaventricular zone; PVNT: paraventricular nucleus of the thalamus; BNST: bed nuclei of 
the stria terminalis; OVLT: organ vascular of lamina terminalis; POA: preoptic area; PVN: paraventricular nucleus; DMN: dorso-medial nucleus; Hipp: 
hippocampus; CTX: cortex
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and cognition at a systems and behavioral level, here we 
will focus on the possible cellular mechanism(s) by which 
the clock could modulate learning and memory over the 
circadian cycle. As was noted, circadian pacemaker activ-
ity is a distributed process, where the rhythm generating 
capacity of the SCN sets the phasing of ancillary oscilla-
tor populations within cortical and limbic circuits that 
underlie learning and memory. The distributed nature of 
clock rhythms raises a question: do these forebrain clocks 
play a critical role in the gating of cognitive capacity, or, 
is output from the SCN sufficient to drive daily rhythms 
in cognition? To examine this question, studies over the 
past several years have utilized a combination of anatom-
ical lesioning and clock gene deletion methods to assess 
the contributions of the SCN, as well as cortical and lim-
bic clocks, to the daily gating of memory.

Initially, it is worth briefly discussing the complex and 
somewhat contradictory results that have come from 
SCN-based lesioning approaches. Work by Phan et  al. 
(2011) reported that SCN ablation in C57/Bl6 mice trig-
gered deficits in contextual fear memory and spatial 
memory [68], and Shimizu et al. (2016) found that SCN 
lesioning disrupts recognition memory [69]. In contrast, 
a number of studies in rodent models have reported that 
SCN ablation does not profoundly affect learning or 
memory [70–73], and, surprisingly, some studies have 
reported that SCN ablation actually improves memory 
[74]. Clock gene knockout studies, which render animals 
arrhythmic, have also reported varying degrees of cogni-
tive deficits, depending on the targeted gene(s) and the 
memory test [75–78].

These conflicting results suggest that there are missing 
elements in our understanding of the functional contri-
bution of the SCN to the cellular and systems processes 
that underlie learning and memory. Within this context, 
the work of Ruby et al., which employed a Siberian ham-
ster model in which the SCN pacemaker can be rapidly 
and irreversibly rendered arrhythmic via a simple manip-
ulation of the lighting cycle has been particularly inform-
ative. In this approach, which side-steps the complicating 
effects of SCN lesioning (e.g., damage to the hypotha-
lamic tissue surrounding the SCN), and clock gene dele-
tion approaches that result in marked developmental 
and health issues [79], arrhythmic hamsters with intact 
SCN exhibited a complete loss of spatial and recognition 
memory capacity (assessed using novel object recogni-
tion and spontaneous alternation assays). Interestingly, 
this effect was reversed, and normal cognitive capacity 
was restored when the arrhythmic SCN tissue was surgi-
cally ablated [50, 73]. Collectively these studies indicate 
that dysregulated output from the SCN (i.e., output that 
does not generate a robust entrainment/time cues) leads 
to a marked disruption of cognition.

One of the most direct approaches to addressing the 
role of non-SCN clocks in memory formation is to use 
targeted gene disruption methods. In this approach, 
the functionality of the molecular clock is abrogated in 
the neuronal circuits that underlie learning and mem-
ory, while the functional properties of the SCN remain 
intact. Using this strategy, both Snider et al. (2016; 2018) 
and Shimizu et  al. (2016) selectively deleted the Bmal1 
gene from excitatory neurons of the forebrain, includ-
ing those within the cortex and hippocampus, while not 
affecting Bmal1 expression in the SCN, and thus retain-
ing the clock timing properties of the master oscillator 
[69, 80, 81]. Loss of Bmal1 led to deficits in hippocampal-
dependent measures of spatial memory acquisition and 
the time-of-day dependent-modulation of novel object 
recognition memory, thus supporting the idea that extra-
SCN timing within forebrain circuits is critical for clock-
gating of cognition. In something of a parallel to these 
experimental approaches, Hasegawa et  al., (2019) used 
a transgenic approach to drive the expression of a dom-
inant-negative form of Bmal1 in a tetracycline-inducible 
manner within cortical and limbic circuits, but not in the 
SCN. Overexpression of this construct led to the disrup-
tion of clock timing properties within the hippocampus, 
and the disruption of hippocampal memory retrieval 
[82]. The idea that ancillary clocks of the CNS function in 
coordination with the SCN clock to modulate cognition 
was further supported by a recent study in which a trans-
genic CK1ε Tau chimeric mouse model was used to cre-
ate a discordant period between the SCN clock (~ 24 h) 
and extra-SCN clocks of the CNS (~ 20 h). Memory per-
formance using the novel object location test revealed 
circadian misalignment between the SCN oscillator and 
forebrain closks led to an inability of chimeric mice to 
effectively discriminate novel from familiar objects [83]. 
Together, these data, along with the SCN lesioning and 
conditional extra-SCN clock knockout strategies outlined 
above indicate that the SCN functions in a coordinated 
manner with cortical and limbic system clocks to shape 
the efficiency of learning and memory over the 24 h cycle.

Clock gating of hippocampal and cortical physiology
A key question here relates to how the circadian timing 
system could shape the cellular physiology of the synaptic 
circuits that underlie cognition. One of the most straight-
forward ways in which this could occur would be for the 
clock to modulate cellular excitability. In this model, the 
capacity of a set level of synaptic input required to actu-
ate intracellular signaling events that underlie short- or 
long-term plasticity, would vary as a function of the cir-
cadian cycle; hence the response properties of the post-
synaptic cell would vary according to clock time.
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This model is based on a large literature showing that 
the TTFL regulates SCN neuronal membrane excitability, 
including the membrane potential and action potential 
generation, as a function of circadian time. This process is 
mediated, in part, through a complex interplay of rhyth-
mic changes in the expression and function of channels, 
receptors, and transporters. These changes, which are 
comprehensively reviewed in Harvey et  al., and Colwell 
et al., include a daily rhythm in the expression of voltage-
dependent and independent Na+, Ca2+ and K+ channels 
that regulate the firing properties of SCN neurons over 
the circadian cycle [84, 85].

Within cortico-limbic circuits, work from several stud-
ies support the idea that the clock shapes the efficacy of 
cellular excitability and ultimately synaptic plasticity. In 
the earliest in vivo work from the hippocampus, Barnes 
et al. (1997) revealed that the response of granule cells to 
entorhinal afferent input varies as a function of circadian 
time in both nocturnal (rats) and diurnal (monkeys) spe-
cies [86]. Interestingly several studies in humans also sup-
port the idea that cortical excitability is modulated by the 
circadian timing system [87,  88,  89], and that this daily 
rhythm is critical for normal cognition. Consistent with 
this idea, aging-related decreases in the daily rhythm in 
cortical excitability are associated with decreased execu-
tive performance and reduced cognitive flexibility [88]. 
Interestingly, transcranial magnetic stimulation-based 
cortical profiling studies in humans have shown that the 
circadian clock modulates GABA-mediated cortical inhi-
bition [89, 90]. Of note, the daily rhythm in cortisol levels 
appears to play a key role in the modulation of GABA-
mediated inhibition [89, 90]. Further, prior sleep history 
was not correlated with this daily rhythm in GABA-
mediated intracortical inhibition, and sleep deprivation 
did not alter this rhythm, thus indicating that the circa-
dian clock underlies GABAergic inhibition [89].

Long-term potentiation (LTP), which is a well-accepted 
cellular model of memory formation [91], has also been 
shown to be under the control of the circadian timing 
system. Harris and Teyler were the first to report hip-
pocampal LTP is modulated over the circadian cycle, 
with the CA1 cell layer showing enhanced levels of 
potentiation during the circadian day relative to the cir-
cadian night [92]; conversely, within the granule cell 
layer potentiation was greater during the circadian night 
than during the circadian day. These studies have been 
followed by a large number of reports that have sys-
tematically examined electrophysiological properties 
of LTP that are affected by the circadian timing system. 
Notably, in C57/Bl6 mice, Chaudhury et al. (2005) found 
that the circadian clock regulated CA3 Schaffer collat-
eral-evoked LTP in the CA1 cell layer [93]. Interestingly, 
analysis of the current-response relationship (which can 

be a reflection of a change in the sensitivity of neurons 
to excitatory input) revealed that the magnitude of the 
stimulus-evoked input/output function was greater dur-
ing the circadian night than during the circadian day in 
CA1 pyramidal neurons, and the rate of LTP decay was 
reduced during the night relative to during the day. Simi-
lar time-of-day variations in cellular excitability have 
been described by a number of groups, using a number of 
methods and model systems. Along these lines, depolar-
ization-evoked excitability has been shown to peak dur-
ing the night in the CA3 cell layer [94], and time-of-day 
differences in evoked responses have also been observed 
in the dentate gyrus (an effect that was, in part, ascribe 
to the effects of extracellular adenosine) [95]. These data 
reveal an underlying set of cellular and synaptic processes 
by which the circadian clock can shape the functional 
properties of neuronal circuits that underlie learning and 
memory. Further, these data also raise the prospect that 
these effects on cellular excitability could be reflected in 
the response profiles of intracellular signaling pathways 
that underlie synaptic plasticity.

Cellular and molecular neuronal plasticity 
and the circadian clock
With respect to molecular and  cellular mechanisms by 
which the circadian timing system could shape cognitive 
capacity, several reports merit discussion.

Recent work by Hasegawa et al. (2019) found that cir-
cadian timekeeping capacity within the hippocampus 
plays a key role in memory retrieval via the daily mod-
ulation of dopamine-dependent signaling [82]. In this 
paper, the authors used a transgenic approach in which 
a CaMKII-tTA line was used to drive the expression of 
a dominant-negative form of Bmal1 within the excitatory 
neuronal populations of the cortex and limbic system. 
In this mouse model, damped clock oscillations were 
shown to lead to a reduction in time-of-day-dependent 
memory retrieval, as assessed using a social recogni-
tion task, novel object recognition test, and a contextual 
fear conditioning task. In all of these tasks, time-of-day 
retrieval, rather than time-of-day memory encoding was 
compromised. These effects were shown to be associated 
with a downregulation of dopamine D1 and D5 receptor 
expression, type 1 adenylyl cyclase and A-kinase Anchor 
Protein 5 (AKAP5). In total, these results point to a 
reduction in clock-gated G-protein-dependent cAMP 
formation. Consistent with this idea, the authors showed 
that the administration of rolipram or injection of the 
D1/5R agonist SKF38393 rescued the retrieval deficit in 
dominant-negative BMAL1 mice. Together these data 
suggest that the daily/circadian modulation of memory 
retrieval is driven in part by the capacity of the circadian 
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clock to gate the efficacy of dopamine-dependent cAMP/
PKA signaling.

Additionally, work from our lab found that a daily 
rhythm in the microRNA miR132 shapes cognitive 
capacity over the circadian cycle. microRNAs are a class 
of small non-coding transcripts that function as negative 
regulators of mRNA translation. Through the modula-
tion of mRNA translation, microRNAs have been shown 
to affect activity-dependent neuronal plasticity, and in 
turn complex cognitive processing [96–98]. Our work 
found that miR-132 is rhythmically expressed under 
the control of the circadian clock in the cortex and hip-
pocampus. Further, using a combination of conditional 
knock-out and tetracycline-inducible mouse models, we 
found that constitutive expression of miR132 (i.e., sup-
pressing miR132 rhythms) blocked time-of-day depend-
ent memory recall (assessed using contextual fear 
conditioning and novel object location paradigms) [99].

Rhythmic regulation of ERK activity and cAMP pro-
duction has been shown to play a role in the clock-gating 
of cognition. Along these lines Eckel-Mahan et al., [100] 
identified a daily rhythm in ERK activity and cAMP levels 
within the hippocampus, and found that the disruption 
of rhythmic ERK activity, via the deletion of calcium-
sensitive adenylyl cyclases, constant light treatment or 
the pharmacological disruption of MAPK signaling, led 
to the disruption of clock-gated contextual memory for-
mation and persistence. Interestingly, building off this 
finding, studies by Rawashdeh et  al. reported that the 
MAPK target pP90RSK accesses the cellular nucleus by 
dimerization with Period1 and that this interaction is 
associated with the daily rhythm in hippocampal plastic-
ity and memory [101]. Further, work by Shimizu found 
that SCOP (suprachiasmatic nucleus circadian oscillatory 
protein) underlies rhythmicity of MAPK signaling within 
the cortex and hippocampus, and that the daily rhythm of 
ERK activity in the hippocampus was disrupted in SCOP 
conditional KO animals. Of note, at a mechanistic level, 
SCOP inhibits MAPK signaling by sequestering nucleo-
tide-free Ras [102], and the dynamic circadian regulation 
of RAS/MAPK signaling via SCOP has been shown to be 
mediated by a time-of-day accumulation of SCOP within 
membrane rafts, where it most effectively binds to RAS 
[100].

Glycogen synthase kinase 3 (GSK3) has also been 
shown to function as a clock-gated regulator of synap-
tic plasticity in the forebrain. GSK3 is a highly expressed 
serine/threonine-specific kinase, with a large number of 
target proteins (> 100) [103], including a number of pro-
teins that play a key role in the core clock timing process 
[104–107]. Consistent with this, GSK3 has been shown to 
have profound effects on the phasing and periodicity of 
the core clock oscillator. Along these lines, suppression 

of GSK3 activity results in an increase in rhythm ampli-
tude and period shortening of the core clock feedback 
loop [108–110]. Further, inhibition of GSK3β results in a 
phase delay of the core clock oscillator, whereas GSK-3β 
overexpression advances the period of the core clock 
oscillator [111]. With respect to clock-regulation of neu-
ronal plasticity, Besing et al. found that GSK3 plays a key 
role in the daily rhythm of hippocampal LTP generation 
[110]. In specific, pharmacological inhibition of GSK3 
led to a reduction in the magnitude of LTP specifically 
during the night time domain, and this effect correlated 
with a marked rhythm in GSK3β phosphorylation. The 
cumulative effects of these daily changes in activation/
response potential of these intracellular signaling path-
ways could be reflected in the daily gating of the system-
level response properties of cortico-limbic circuits, and 
this, in turn could manifest as a daily rhythm in cognitive 
capacity.

Finally, to provide a bit of context, and to shore-up 
the rationale for the concepts outlined above, it is worth 
noting that a number of these clock-gated hippocampal 
cellular plasticity pathways (e.g., ERK/MAPK signaling, 
miR132 expression, cAMP levels) are under the control 
of the circadian clock in the SCN. For example, within the 
SCN, MAPK pathway activity is tightly regulated; hence 
the clock gates the capacity of the MAPK pathway to be 
activated. The best example of this phenomenon is the 
response properties of the pathway to photic stimulation. 
Along these lines, photic stimulation during the circa-
dian night triggers MAPK pathway activation, as assessed 
by monitoring the activation state of the MAPK effec-
tor kinase ERK, whereas exposure to the same stimulus 
during the circadian day does not trigger ERK activation 
[112, 113]. The effects of ERK activation during the circa-
dian night in the SCN are profound; light-evoked MAPK 
activation regulates the resetting of the SCN oscillator. 
Further, these effects correlate with the time-of-day gated 
induction of plasticity associated immediate early genes, 
including cFos, JunB, and EGR1 (along with the induction 
of the core clock gene Period1) [113, 114].

Returning to the concept of the gating of signaling 
pathways within limbic circuits, it is worth noting that 
the effects of the circadian clock need not impose tight 
binary, SCN-like, gating over kinase pathway activity to 
confer time-of-day modulation over learning and mem-
ory. Rather, the effects might be more subtle, as one 
would expect given the modulatory nature of clock tim-
ing on cognition (again, this is in contrast to the tight, 
time-domain-delimited, control that the SCN clock 
imparts over kinase response properties). As yet, it is 
unclear whether similar or distinct time-of-day-depend-
ent gating mechanisms regulate kinase activation in the 
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SCN and in cortical-limbic oscillator populations. Clearly 
this is a line of inquiry that merits extensive investigation.

Clock dysregulation and Alzheimer’s disease
Alzheimer’s disease (AD) is a complex neurodegenerative 
disorder that is functionally characterized by a deterio-
ration of cognitive abilities, which, often times, initially 
manifests as a disruption in short-term memory. As the 
disease progresses, long-term memory deficits become 
more pronounced, as are disruptions in executive func-
tion and the emergence of neuropsychiatric symptoms 
[115]. At a histological level, AD is characterized by 
neuronal loss, the appearance of reactive astrocytes and 
microglia, the accumulation of intracellular hyperphos-
phorylated Tau-based neurofibrillary tangles and the 
accumulation of amyloid-beta (Aβ) within the extracellu-
lar space. Notably, the appearance of AD biomarkers can 
occur over an extended period prior to initiation of cog-
nitive impairment, with reports showing cerebrospinal 
fluid Aβ42 can precede the first signs of cognitive impair-
ment by over 10 years, whereas abnormal levels of tau are 
detected shortly before the first signs of cognitive impair-
ment [116, 117].

Another key feature of AD is the dysregulation of the 
circadian timing system, which is best embodied by a dis-
ruption in the sleep/wake cycle (e.g., highly fragmented 
and shifted sleep patterns: [118–121]), which has been 
reported in the preclinical phase of AD and is a well-
characterized component of mid- and late stage AD 
[122–124]. Additionally, alterations in the clock-regula-
tion of core body temperature rhythms, activity rhythms, 
the phasing of the pineal melatonin rhythm are also 
comorbid features of AD [125, 126].

Interestingly, several recent papers have raised the 
prospect that the disruption of circadian timing in AD 
could produce a self-reinforcing feedback loop, where 
disruption of timing accelerates AD pathogenesis (e.g., 
amyloid deposition, oxidative stress and cell death) that 
in turn leads to a further disruption of the circadian tim-
ing system [122, 123, 127]. The deleterious effects of this 
feedback loop, such as the disruption of the sleep/wake 
cycle and neuroinflammation, could also contribute to 
the cognitive deficits in AD. As outlined above, a large 
literature has shown that cognitive capacity is under the 
influence of the circadian timing system, and that the 
disruption of clock timing leads to marked deficits in an 
array of cognitive tasks [50, 128–130]. Thus, the disrup-
tion of the circadian timing system could be a key con-
tributing factor to both AD neuropathogenesis, and the 
early and mid-stage cognitive impairments that are a cen-
tral feature of AD.

If disruption of the circadian timing system is indeed, 
a contributing factor to the cognitive decline resulting 

from AD-a key outstanding question is centered on the 
identification of the location within the CNS where dis-
ruption of the circadian timing system arises. Clearly, the 
disruption of SCN-based timing could be pivotal; how-
ever, given the distributed nature of the circadian timing 
system, coupled with the broad-based disruption of cor-
tical and limbic circuits in AD, it would not be surpris-
ing to find that alterations in timekeeping capacity within 
these forebrain circuits could also contribute to the dis-
ruption of cognition.

With respect to the potential connection between AD 
and disruption of the SCN, postmortem analysis from 
AD patients shows cell loss (i.e., vasoactive intestinal 
polypeptide-, vasopressin- and neurotensin-expressing 
neurons) as well as an accumulation of Tau neurofibril-
lary tangles: [126, 131–133]. Given the key role that both 
AVP and VIP signaling play in SCN timing [134,  135], 
one could easily envision a model wherein AD-mediated 
alterations of AVPergic and VIPergic signaling could lead 
to disrupted SCN timing and clock gated SCN output. 
Reactive gliosis, assessed using GFAP labeling, was also 
detected in the SCN of AD patients [126, 132]. Interest-
ingly, recent work shows that clock timing within SCN 
astrocytes contributes to the inherent pacemaker activ-
ity of the SCN: whether a change in astrocyte reactivity 
could affect their capacity to contribute to SCN timing is 
not known [136].

In transgenic mouse models of AD, data supporting 
a deficit in SCN timing are somewhat mixed (compre-
hensively reviewed in [137,  138]). Along these lines, in 
the amyloid beta precursor protein-based 5XFAD trans-
genic line, Song et  al., reported damped rhythms and 
alterations in the waveform of core body temperature and 
home cage activity at both the early stage (2 months of 
age) and late stage (8 months of age) of the pathological 
process [139]. Conversely, Nagare et al. (2020) performed 
a longitudinal profiling study (20 weeks to 50 weeks of 
age) of circadian locomotor activity in 5XFAD mice that 
did not detect a significant effect on the periodicity of the 
SCN pacemaker [140]. Further, in the 3xTg-AD mouse 
line, which is a mixed Aβ and tau pathology AD model, 
modest pathological changes were observed in the SCN 
(i.e., a reduction in VIP- and AVP- expressing cells) how-
ever, no effects on the free running period or light-evoked 
clock entrainment were observed [141]. However, in the 
TG4510 mouse model, which exhibits tau pathology and 
marked neurodegeneration, circadian profiling revealed a 
long free-running phenotype, tauopathy in the SCN, and 
damped rhythms of the core clock gene Per2, thus indi-
cating that the molecular clock timing properties in the 
SCN are disrupted [142]. Collectively, the mixed result of 
these and other studies raises the following possibilities: 
1) the inherent clock timing properties of the SCN are 
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not markedly affected by Aβ- or tau-mediated patholo-
gies, 2) that transgenic mouse lines do not effectively 
model the SCN-centric circadian disruptions observed in 
AD patients, or 3) that the locus of the clock disruption 
in AD occurs largely outside of the SCN.

Pivoting from the SCN, a number of studies have 
shown that oscillator populations within cortical and 
limbic circuits are affected in AD. In line with this idea, 
Cermakian et al., (2011) examined the temporal expres-
sion patterns of circadian clock genes within the cortex 
and the bed nucleus of the stria terminalis in postmor-
tem tissue from AD patients [143]. Interestingly, both the 
phase of clock gene oscillations and phase relationships 
between genes and regions were altered in AD patients, 
relative to aged controls, thus revealing a marked tem-
poral desynchronization of peripheral oscillators. These 
findings indicate that clock timing outside of the SCN 
is disrupted and/or desynchronized in AD patients, and 
in fact, the authors of this study posited that disrupted 
oscillatory capacity may be an independent risk factor 
for AD development. In addition, in the APP/PS1 AD 
mouse model, daily rhythms in novel object recognition 
memory and LTP were disrupted, and the diurnal differ-
ence in long-term spatial memory was decreased [144]. 
Further, in the Tg-SwDI mouse model of AD, Fusilier 
et al. (2021) reported a disruption in the clock-gating of 
spatial memory (assessed using the spontaneous alter-
nation assay), and this decrease in clock-gated cognitive 
capacity was associated with a damping of molecular 
clock rhythms and daytime inhibitory synaptic transmis-
sion in the hippocampus [145]. When considered within 
the context of the noted work indicating only modest 
effects of AD-like pathologies on the timing properties of 
the SCN, these findings support the idea that the disrup-
tion/desynchronization of oscillator populations within 
cortical and subcortical regions, could be a key event that 
underlies early and mid-stage learning and memory defi-
cits in AD. Interestingly, Kress et al. (2018) reported that 
the disruption of peripheral clock timing in the CNS led 
to an increase in ApoE expression and fibrillar Aβ plaque 
formation (of note however, several other measures of Aβ 
load did not appear to be markedly affected by the dis-
ruption of peripheral clock timing) [146].

Chronotherapeutic approaches to improve cognition 
in Alzheimer’s disease
Given the mounting evidence that the dysregulation of 
the circadian timing system(s) is a key feature of AD, con-
siderable effort has been invested in developing chrono-
therapeutic approaches for the treatment of AD. These 
efforts have been centered on a number of strategies 
that target cortical, limbic and/or SCN oscillator popu-
lations, and are designed to enhance cellular oscillator 

entrainment, synchronization, or to strengthen cellular 
oscillatory capacity; The results of these effects on cel-
lular timing would be to enhanced clock-gated physi-
ological output. Here we will discuss several current and 
potential chronotherapeutic approaches that likely func-
tion by facilitating clock entrainment, cellular clock syn-
chronization or rhythm amplitude.

Early morning light therapy
To date, evidence supports the idea that light therapy, 
and in particular, light treatment during the early part of 
the day, leads to a stabilization of rhythms (as assessed by 
melatonin onset), sleep consolidation, and improved cog-
nition in patients with AD [147–150]. These effects are 
thought to result in part from the powerful entraining 
effects of light on the SCN master clock. At a cellular and 
systems level, stabilizing SCN clock entrainment would 
ensure that the master clock maintains the correct phase 
relationship with the 24 h day. Further, stable SCN clock 
entrainment would also likely lead to more robust SCN 
rhythms; in turn, an improvement in both SCN entrain-
ment and rhythm strength would likely be reflected in 
enhanced melatonin rhythms as well as an improvement 
in sleep quality and in cognition.

Gamma frequency light treatment
Gamma-band activity (~ 30–80 Hz range) is thought to 
facilitate effective connectivity/coherence between brain 
regions and correlate with attention, learning and mem-
ory retrieval [151, 152], and the circadian timing system 
appears to influence the frequency of gamma burst activ-
ity within cortical and limbic brain regions [153–155]. 
Of note, in AD patients, and in mouse AD models, 
there is a reduction in cortical and hippocampal gamma 
power activity [149, 152, 156–158]. Interestingly, in ani-
mal models, exposure to a 40 Hz light stimulus, which 
facilitates gamma-wave entrainment, has been shown 
to improve cognition and decrease AD-like pathological 
markers, potentially via a mechanism in which light stim-
ulates microglia-mediated Aβ uptake [149, 159]. The pre-
cise mechanisms by which 40 Hz light therapy enhances 
cognitive capacity is not known; however, given 1) the 
role of the circadian clock in the gating of daily gamma 
power, 2) the reduction in gamma power in AD, and 3) 
the disruption in cortical/limbic circadian rhythms in 
AD, it is reasonable to posit that the gamma frequency 
therapy could be working, in part, by strengthening the 
circadian rhythm generating capacity of telencephalic 
oscillator populations. Current work is focused on test-
ing the safety and efficacy of gamma-wave entrainment 
procedures on AD patients [160–162].
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Pharmacotherapeutic approaches to enhance cellular timing 
in AD
With respect to AD, there are a number of cellular signal-
ing processes that could be targeted to enhance entrain-
ment, synchronization and/or increase the robustness 
and periodicity of core clock rhythms. Focusing on reset-
ting, and thus resynchronization, of cellular oscillator 
populations, the ability to selectively regulate protein 
kinase pathways, including the p44/42 MAPK pathway, 
as well as signaling via Ca2+/calmodulin kinases, which 
serve as key conduits to the clock, could prove to be an 
effective approach [114, 163, 164]. The resetting efficacy 
of the noted pathways appears to be mediated, in large 
part, via the induction of CREB-mediated transcription, 
which, in turn triggers period expression [165–167]. As 
a state variable of the core clock timing mechanism, the 
induction of period gene expression would drive the 
resetting, and in turn, the resynchronization of cellu-
lar oscillator populations. Consistent with these ideas, 
numerous studies have shown that rapid clock cell syn-
chronization can be achieved via the transient activation 
of the p44/42 MAPK cascade [164,  168–170]. Another 
potential strategy by which to entrain extra-SCN oscilla-
tor populations would be to target GRE-mediated tran-
scription. As discussed above, signaling via GC appear 
to be a principal route through which the SCN sets the 
phasing and/or contributes to rhythmicity of peripheral 
oscillator populations [53, 56, 57, 171]. Here it is worth 
noting that signaling via both the aforementioned kinase 
pathways, as well as adrenal corticosteroid output, are 
markedly altered in AD patients, as well as in animal 
models of AD [172–175]. To our knowledge, the utility of 
chronotherapeutic strategies to target these pathways in 
AD (or in animal models of AD) has not been reported.

Targeting of GSK3 as a treatment for AD has been the 
focus of a number of investigations, given that chroni-
cally high levels of GSK3 activation have been detected 
in AD, and that elevated levels of GSK3 activity lead to 
pathogenic hyperphosphorylation of Tau protein (and 
in turn the deposition of neurofibrillary tangles), Aβ 
production, and marked cognitive deficits [176–180]. 
Further, in preclinical animal studies, pharmacological 
approaches designed to reduce GSK3 activity have been 
shown to reduced AD-like pathology, including Aβ pro-
duction, tau hyperphosphorylation and the associated 
cognitive impairments [181–183]. Given the daily rhythm 
in GSK3 activity, and the noted roles that GSK3 signaling 
plays in clock timing and clock gated cellular plasticity, 
GSK3 may prove to be a nodal point between AD patho-
genesis and the associated dysregulation of the circadian 
clock timing mechanism. As such, studies that examine 
the efficacy of GSK3 inhibitors to ameliorate clock dys-
regulation in AD is highly merited.

With respect to clock amplitude and periodicity, recent 
work has revealed that casein kinase 1 (CK1) ε/δ may be 
a suitable target for the therapeutic intervention against 
the cognitive effects of AD. Notably, daily administra-
tion of the CK1 ε/δ inhibitor PF 670462 has been shown 
to have profound effects on clock timing: increasing the 
period of the SCN oscillator and restoring rhythms in 
animals with disrupted/damped oscillations [13]. With 
respect to AD, a recent set of studies using the 3xTg-AD 
mouse model found that the daily/timed administration 
of PF 670462 rescued working memory (assessed using 
the spontaneous alternation assay) and re-established the 
capacity of the circadian timing system to drive rhyth-
mic regulation of the hippocampal transcriptome [184]. 
Further, SCN-clock gated rhythmic output (assessed 
using locomotor activity) was normalized with daily 
PF-670462 treatment. Interestingly, a follow-up study 
found that PF-670462 led to a dose-dependent reduction 
in Aβ levels, and plaque size within the prefrontal cortex 
and hippocampus [185]. Further work will be needed to 
determine whether the cognitive effects of CK1 inhibi-
tion in the AD mouse models are a result of the reestab-
lishment of clock timing within the SCN, cortico-limbic 
circuits, or within both regions. Nevertheless, these stud-
ies raise the prospect that targeting CK1ε/δ could prove 
to be a viable therapeutic strategy to address disruptions 
of the circadian timing system in AD patients.

Targeting the REV-ERB/ROR pathway may also prove 
to be an effective strategy for the treatment of AD. Sup-
port for this idea comes from recent work showing that 
the inhibition of REV-ERB, either through the use of the 
selective REV-ERB antagonist SR8278 or the genetic 
knockdown of REV-ERB led to an enhancement of 
microglial uptake of Aβ, a reduction in amyloid plaque 
levels, a reduction in markers of neuroinflammation, 
and the stabilization of synaptic physiology [186]. Con-
sistent with these findings, the polymethoxylated flavone 
nobiletin, which directly binds RORα/γ and enhances 
Bmal1 transcription, was recently found to confer neu-
roprotection and ameliorate cognitive deficits in animal 
models of accelerated senescence and AD [187–190]. At 
a mechanistic level, nobiletin was shown to reduce Aβ 
pathology, hyperphosphorylation of tau, and oxidative 
stress [190–193]. In addition, nobiletin treatment facili-
tated the activation of signaling pathways that underlie 
synaptic plasticity and memory formation (e.g., cAMP; 
PKA; ERK and CREB) [190–196]. Interestingly, many of 
the effects of nobiletin were shown to be mediated via a 
clock-dependent mechanism; hence, in ClockΔ19/Δ19 
clock-disrupted mice nobiletin was largely ineffective in 
conferring resistance to metabolic stress [197]. Finally, 
these data, coupled with work showing that nobiletin 
enhances the robustness/amplitude of peripheral clock 



Page 11 of 16Hoyt and Obrietan ﻿Molecular Neurodegeneration           (2022) 17:35 	

rhythms and has limited effects on the master clock in 
the SCN [197] suggests that the effects of nobiletin on 
AD pathogenesis result from the strengthening of clock 
timing in cortical and limbic circuits.

Concluding remarks
A remarkable observation from several years ago is that 
the TTFL is cell autonomous (i.e., it does not require cel-
lular input, and as such, it occurs in isolated cells [198]). 
However, for the emergence of robust and synchronized 
organ- and system-wide circadian oscillations, single-cell 
TTFL activity needs to be set to a daily phasing cue. For 
peripheral oscillators, these phasing cues come from the 
SCN (in the form of a synaptic or hormonal signal), and a 
loss of clock-gated SCN output (or the inability of periph-
eral oscillators to effectively transduce clock entrainment 
cues) leads to a desynchronization of peripheral oscil-
lator populations, and a dysregulation of clock-gated 
physiological output [199, 200]. The work described here, 
suggest that early in AD-like disease progression there 
is a disruption of systems-level circadian timing within 
forebrain circuits that are required for learning and 
memory, and concordant with this loss of cellular timing, 
there are marked cognitive deficits (Fig. 3). Further, these 
data indicate that the fidelity of the SCN timing system is 
largely intact during this same time period; hence, these 
data raise the possibility that there is an elevated level 

of disruption of circadian time keeping capacity within 
cortical and limbic circuits (relative to the timing in the 
SCN), and that it is this disruption/desynchronization 
of forebrain oscillators from the SCN that contributes to 
the early- and mid-stage cognitive deficits in AD. Further 
studies that test key aspects of this model should provide 
important insights into the cellular- and systems-level 
circadian processes that contribute to AD.
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