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Abstract 

Background:  The retina, as part of the central nervous system (CNS) with limited capacity for self-reparation and 
regeneration in mammals, is under cumulative environmental stress due to high-energy demands and rapid protein 
turnover. These stressors disrupt the cellular protein and metabolic homeostasis, which, if not alleviated, can lead to 
dysfunction and cell death of retinal neurons. One primary cellular stress response is the highly conserved unfolded 
protein response (UPR). The UPR acts through three main signaling pathways in an attempt to restore the protein 
homeostasis in the endoplasmic reticulum (ER) by various means, including but not limited to, reducing protein 
translation, increasing protein-folding capacity, and promoting misfolded protein degradation. Moreover, recent work 
has identified a novel function of the UPR in regulation of cellular metabolism and mitochondrial function, distur-
bance of which contributes to neuronal degeneration and dysfunction. The role of the UPR in retinal neurons during 
aging and under disease conditions in age-related macular degeneration (AMD), retinitis pigmentosa (RP), glaucoma, 
and diabetic retinopathy (DR) has been explored over the past two decades. Each of the disease conditions and their 
corresponding animal models provide distinct challenges and unique opportunities to gain a better understanding of 
the role of the UPR in the maintenance of retinal health and function.

Method:  We performed an extensive literature search on PubMed and Google Scholar using the following keywords: 
unfolded protein response, metabolism, ER stress, retinal degeneration, aging, age-related macular degeneration, 
retinitis pigmentosa, glaucoma, diabetic retinopathy.

Results and conclusion:  We summarize recent advances in understanding cellular stress response, in particular the 
UPR, in retinal diseases, highlighting the potential roles of UPR pathways in regulation of cellular metabolism and 
mitochondrial function in retinal neurons. Further, we provide perspective on the promise and challenges for target-
ing the UPR pathways as a new therapeutic approach in age- and disease-related retinal degeneration.

Keywords:  Unfolded protein response, Metabolism, Endoplasmic reticulum stress, Retinal degeneration, Aging, Age 
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Background
The retina is a thin layer of neural tissue that lies at the 
back of the eye and is responsible for sensing and pro-
cessing the light input to generate visual signals and 
transmitting the information to the brain via the optic 
nerve. The vertebrate retina develops embryonically as 
an evagination from the developing neural tube and is 
thus part of the central nervous system (CNS) [1]. The 
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structure of the retina is highly organized, consisting of 
multiple layers of photosensory neurons (photorecep-
tors), interneurons (bipolar cells, amacrine cells, and hor-
izontal cells), projection neurons (retinal ganglion cells, 
RGCs), and their synapses. In addition, retinal blood ves-
sels, which are enriched in the inner retina, and glial cells 
(astrocytes, Müller cells, and microglia) function as the 
supporting systems and form an integrated network with 
retinal neurons to maintain the metabolic and immune 
homeostasis in the retina. In mammals, retinal neurons 
are terminally differentiated at the early stage of life and 
do not regenerate [2]. Thus, severe injuries and loss of 
retinal neurons, such as light-sensing photoreceptors and 
projection neurons (RGCs), are often irreversible and 
subsequently lead to significant degeneration of the ret-
ina and catastrophic vision loss and blindness.

Relative to other CNS counterparts, retinal neurons 
are subjected to a greater level of environmental chal-
lenges and stresses [3, 4]. For example, retinal photore-
ceptors are constantly exposed to light, which can cause 
light toxicity and oxidative damage. In addition, photo-
receptor cells have a high metabolic demand and a high 
protein turnover rate to maintain their physiological 
function and structural integrity [4]. The outer segments 
(OS) of photoreceptors, as the major site for visual pho-
totransduction, are composed of highly specialized, disc-
like structures enriched in lipids and proteins, which are 
prone to light-induced oxidative damage. To overcome 
the damage, the photoreceptor OS undergo daily shed-
ding and renewal [5]. This process requires constant syn-
thesis and proper folding of new proteins. In addition, 
major functions of photoreceptors, including phototrans-
duction and neurotransmission, consume significant 
amounts of energy. These unique characteristics make 
photoreceptors highly susceptible to perturbations in the 
mitochondria and ER, which are the central hubs that 
govern metabolic and protein homeostasis.

To cope with the stress conditions, cells have developed 
a broad range of sophisticated stress response mecha-
nisms to prevent and mitigate potential damages. These 
cellular signaling pathways, activated by distinct stress-
ors, attempt to return the cell to homeostasis. However, 
if the stress conditions cannot be resolved, cells will acti-
vate programmed cell death signaling to eliminate dam-
aged cells. Therefore, the stress response pathways are 
not only critical to maintaining long-term retinal integ-
rity and function, but may also participate in disease 
pathophysiology by promoting cell death and degenera-
tion. In addition to intrinsic stresses in retinal neurons, 
metabolic changes resulting from dysfunction and loss 
of retinal blood vessels, which reduces oxygen and nutri-
ent supply to the retinal tissue, are also a frequent cause 
of neuronal death and degeneration. This can be seen in 

a number of ischemic retinal diseases such as diabetic 
retinopathy (DR) [6]. Imbalance of retinal microenvi-
ronment, governed by the blood-retinal barrier (BRB) 
consisting of tight junctions between neighboring vas-
cular endothelial cells (inner BRB) or retinal pigment 
epithelium (RPE) (outer BRB), and glial cells, can acti-
vate cellular stress signaling in retinal neurons ultimately 
impacting their survival and function, resulting in vision 
impairment and blindness.

Among the various types of cellular stress responses, 
ER-associated signaling pathways, including the unfolded 
protein response (UPR), ER-associated degradation 
(ERAD), autophagy, and integrated stress response (ISR), 
play a central role in promoting and maintaining a bal-
anced and functional proteome in a cell. The UPR is acti-
vated upon a stress condition, where excessive unfolded 
or misfolded proteins accumulate in the ER, referred to 
as ER stress. To alleviate ER stress, the ER resident chap-
erone protein glucose-regulated protein 78 (GRP78; also 
known as immunoglobulin binding protein, BiP), dis-
sociates from trans-ER membrane proteins activating 
transcription factor 6 (ATF6), inositol requiring enzyme 
1 (IRE1), and PKR-like endoplasmic reticulum kinase 
(PERK). Subsequently, GRP78 binds to unfolded and 
misfolded proteins to promote their folding or refold-
ing and as well keep them in a soluble form to prevent 
protein aggregation [7]. The dissociation of GRP78 from 
ATF6, IRE1, and PERK activates each of these proteins, 
which serve as ER stress sensors, and their downstream 
signaling cascades (Fig.  1). These signaling pathways 
work synergistically to restore the ER homeostasis via a 
variety of processes including increasing protein deg-
radation, decreasing protein translation, and increas-
ing production of chaperones and foldases that facilitate 
protein folding [7]. Activation of the UPR is an important 
mechanism required for cells to maintain the protein and 
ER homeostasis, especially in neural tissues such as the 
retina [8]. In addition, the UPR has been linked to a wide 
array of physiological processes such as glucose and lipid 
metabolism, mitochondrial function, redox regulation, 
calcium homeostasis, autophagy, just to name a few [9]. 
Understanding the role and regulation of the UPR in reti-
nal development, maintenance, and aging, and its impli-
cation in retinal dysfunction and degeneration, could 
provide novel insights into the pathogenesis of retinal 
disease and lead to new treatments.

Here, we describe recent advances in understand-
ing the mechanisms and signaling pathways of cellu-
lar stress response, with a major focus on the UPR, in 
retinal cells during aging and common retinal diseases, 
such as age-related macular degeneration (AMD), reti-
nitis pigmentosa (RP), achromatopsia, glaucoma, and 
diabetic retinopathy (DR). We highlight a potential role 
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of the UPR in regulation of cellular metabolism and 
mitochondrial function in retinal neurons and their 
therapeutic implications in protecting against age- and 
disease-related retinal degeneration and restoring neu-
ronal and synaptic function.

Aging
Aging is a major risk factor for chronic human disease, 
including a broad range of neurodegenerative diseases 
in the eye. Epidemiologic research demonstrates that the 
frequency of visual impairment from all causes increases 
significantly past the age of 60 and the prevalence of com-
mon retinal diseases such as AMD, DR, and glaucoma, 
also increases with age [10, 11]. Aging is a multifaceted 
process in which accumulation of stress over time results 

in alterations in cellular signaling, metabolic control, 
and protein homeostasis, ultimately causing substantial 
changes in morphology, structure, and function in cells 
and tissues. Clinical studies have shown a continuous 
decline of retinal function with aging in normal human 
subjects aged 10 to 69 years and a reduction in central 
retinal thickness and retinal nerve fiber layer thickness in 
elderly population with age of 65 years or older [12, 13]. 
In experimental models, wild-type mice after 12 months 
of age demonstrate decreased retinal thickness, reduced 
retinal function, and a loss of retinal neurons includ-
ing RGCs, bipolar cells, and peripheral photoreceptors 
[14–16]. In addition, the dendritic field size in subtypes 
of RGCs decreases with aging, suggesting that morpho-
logical changes other than cell loss of retinal neurons 

Fig. 1  Schematic diagram depicts the three branches of the unfolded protein response (UPR) and resulting downstream targets reviewed in the 
context of aging and retinal disease. Each branch is activated when the resident ER chaperone, GRP78, releases from IRE1, PERK, and ATF6 to bind 
accumulated unfolded or misfolded proteins. The resultant signaling cascades activate downstream effectors, such as XBP1 and ATF4, in an attempt 
to re-establish homeostasis through multiple means including repressing protein translation, promoting ERAD (endoplasmic reticulum associated 
protein degradation) and RIDD (regulated IRE1-dependent decay of mRNA), and upregulating the expression of ER chaperones and foldases. 
In addition, the UPR pathways regulates genes involved in a broad range of ER stress-dependent and independent cellular processes including 
autophagy, glucose metabolism, lipid synthesis, cytoskeletal reorganization, and calcium regulation
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also contribute to age-related functional deficits [17]. 
Loss of synapses and increased synaptic remodeling in 
the neural retina is another characteristic of aged retina, 
which is evidenced by fewer photoreceptor synapses and 
displaced presynaptic photoreceptor ribbons from the 
outer plexiform layer (OPL) to the outer nuclear layer 
(ONL) along with aberrantly extended bipolar dendrites 
in mouse models of premature aging [18–21]. Interest-
ingly, retraction of photoreceptor synapses has also been 
reported in human retinal degenerative diseases, such as 
AMD, retinitis pigmentosa, and retinal detachment [22]. 
These overlapping phenotypes suggest common under-
lying mechanisms for retinal degeneration during aging 
and disease conditions.

A functional UPR for maintaining the protein and 
ER homeostasis is critical for healthy aging [23]. As the 
organism ages, the expression levels of UPR proteins 
show changes and the ability of the cell to respond to cel-
lular stress declines. In human lens, the baseline levels of 
GRP78, IRE1, and ATF6 increase progressively from ages 
50 to 90 years [24]. Similarly, the levels of C/EBP homolo-
gous protein (CHOP) increase in aged mouse brain and 
retina [25]. Conversely, the baseline level of spliced XBP1 
(XBP1s; the activated form of XBP1) decreases with age 
in the mouse retina [18]. In human, this variation extends 
to the individual with aged monozygotic twins show-
ing differential expression of XBP1s correlated to cog-
nitive function [26]. Furthermore, the changes in UPR 
components appear to be tissue-specific. For example, 
phosphorylated PERK levels are reduced in aged pan-
creas but increased in aged kidney [27, 28]. In aged rat 
retina, effectors in the PERK pathway, such as phos-
phorylated eukaryotic translation initiation factor-2α 
(eIF2α) and NF-E2-related factor 2 (Nrf2) are reduced, 
whereas other downstream effectors, such as ATF4 and 
CHOP, are elevated compared to younger controls [29]. 
These changes may suggest an increase in cellular stress 
in the ER coupled with disrupted protein homeostasis. In 
human retina, the presence of protein aggregates of non-
phosphoylated tau and α-synuclein increases substan-
tially with advanced age, further supporting the presence 
of protein misfolding and dyshomeostasis in aged retinas 
[30].

In addition to the changes in the basal levels of UPR 
proteins, the ability of aging cells to respond to cellular 
stress declines [31, 32]. Our recent study has shown that 
the ER stress stimulator, thapsigargin, was able to induce 
a robust activation of the UPR in the retina of young 
adult mice but failed to increase XBP1s expression in the 
retina of 13-month-old mice [18]. This finding suggests 
that declined function of the UPR pathways may contrib-
ute to neuronal dysfunction and degeneration in aging 
mice [18] and retinal diseases [33]. Further supporting 

this notion, conditional knockout (cKO) of XBP1 in reti-
nal neurons results in accelerated retinal degeneration 
and retinal function decline with aging. At the age of 
12–14 months, XBP1 cKO mice show significant struc-
tural and functional deficits that resemble wild-type mice 
twice that age, including reduced retinal thickness, loss of 
RGCs, and morphological defects of retinal synapses [18, 
20]. Remarkably, a strikingly similar phenotype featur-
ing age-related increase in ectopic photoreceptor-bipolar 
synapses is also observed in ER membrane protein com-
plex 3 (Emc3) cKO mice [21], liver kinase B1 (Lkb1) cKO 
mice, and AMP activated protein kinase, alpha 1 and 2 
subunits (AMPKα1/AMPKα2) double cKO mice [19]. 
Functionally, both light- and dark-adapted electroreti-
nograms (ERG) show reduced amplitudes in all of these 
aging cKO models; the optokinetic response also dete-
riorates in mice with aging [15, 18, 20, 21]. AMPK func-
tions as an energy sensor, whose activation increases 
glucose uptake and glycolysis, promotes fatty acid oxida-
tion, and enhances mitochondrial biogenesis to restore 
energy supply and balance [34]. These findings suggest 
that maintaining the ER homeostasis and energy metabo-
lism is critical for retinal neuronal survival and function 
during aging. Intriguingly, the retinas from aged XBP1 
cKO mice have an overall decrease in baseline glycolysis 
and in maximum glycolytic response, compared to age-
matched wild-type mice, and these changes may con-
tribute to accelerated retinal neurodegeneration in these 
mice [12]. A progressive decline in metabolic control due 
to impaired function of nutrient-sensing pathways results 
in perturbations in energy metabolism in aged animals 
[35]. Together, these studies suggest restoring the UPR 
function may protect against metabolic defects, thus 
reducing the long-term stress associated with aging and 
tissue deterioration in age-related disease.

Age‑related macular degeneration
Age-related macular degeneration (AMD) is a leading 
cause of severe, irreversible vision loss in elderly popula-
tions [36]. Approximately 10% of individuals over the age 
of 65 years and 25% of those over the age of 75 years in 
developed countries have been diagnosed with AMD. As 
life expectancy increases, so too does the prevalence of 
AMD. It is expected that by 2040, nearly 300 million peo-
ple worldwide will be affected by the disease [37, 38]. The 
rapid increase in disease prevalence renders AMD a sig-
nificant global health concern that negatively influences 
the well-being of the population. Clinically, AMD can be 
categorized into two stages, early and late AMD. Early 
stages of the disease are characterized by small extracel-
lular deposits or drusen, depigmentation of the retinal 
pigment epithelium (RPE) layer, and impaired RPE func-
tionality [39, 40]. Advanced stages of the disease can be 
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subclassified into non-neovascular (or dry) and neovas-
cular (or wet) AMD. Both forms of advanced-stage AMD 
are accompanied by loss of photoreceptors and geo-
graphic atrophy (GA), but neovascular AMD (nAMD) is 
distinguished by presence of pathological angiogenesis 
in the macula, or macular neovascularization (MNV) 
[41, 42]. According to the anatomic location and origina-
tion of the new vessels, MNV can be classified into three 
major types. Type 1 and Type 2 MNV originate from 
the choroid and proliferate under the RPE (Type 1) or 
breaks through the RPE to reach subretinal space (Type 
2), while Type 3 MNV originates from the retina and 
grows toward the RPE [41]. Regardless of the type of the 
MNV, these malformed vessels lack appropriate pericyte 
coverage and tight junctions between endothelial cells 
and are therefore prone to leakage or rupture. Common 
lesions caused by MNV include exudation, hemorrhages, 
and edema in the macula, which is often associated with 
severe visual impairment [39, 43].

AMD is a multifactorial disease involving the interplay 
between advanced age, environmental risk factors, and 
genetic factors. Common variants found in the comple-
ment factor H (CFH) and age-related maculopathy sus-
ceptibility 2 (ARMS2) genes have been shown to increase 
the risk of AMD [39]. Environmental factors that are 
responsible in part for disease onset and progression 
include modifiable risk factors like cigarette smoke and 
diet, but also hyperopia, hypertension, and sex (female) 
[44, 45]. The complex etiology poses significant chal-
lenges to the development of therapeutics for AMD. 
Current standard treatment options include intravitreal 
anti-vascular endothelial growth factor (VEGF) thera-
pies for MNV in patients with wet AMD or nAMD, 
which significantly reduce vascular leakage in most cases, 
and inhibit vascular growth in some; however, its over-
all long-term effect on MNV regression or inhibition of 
MNV expansion remains suboptimal [43, 46]. In addi-
tion, no effective treatment is available for patients with 
early AMD and late stage AMD with GA [47]. Limita-
tions on treatment options for AMD leave much to be 
discovered regarding the pathophysiology of the disease 
and the underlying molecular mechanisms, particularly 
initiation of the early-stage damage and dysfunction of 
the RPE.

The RPE is a monolayer of cuboidal epithelial cells 
located between choroidal vasculature and the outer 
segments of the photoreceptors. Basolaterally, RPE cells 
form the outer BRB by tight junctions and adhere to a 
highly organized basement membrane, known as Bruch’s 
membrane, which separates RPE cells from fenestrated 
endothelium of the choroidal capillaries [48, 49]. Apically, 
the RPE faces the light-sensitive photoreceptor outer seg-
ments (POS) and plays a crucial role in nourishing the 

outer retina, detoxifying and phagocytosing damaged 
POS, and regenerating visual pigment to maintain the 
process of phototransduction. In addition, the RPE serves 
as an essential component of a metabolic ecosystem in 
the eye [50–52]. In this system, glucose from the choroid 
is transported through the RPE to photoreceptors; pho-
toreceptors then convert glucose to lactate, which is pro-
vided as a fuel to the RPE and neighboring retinal cells 
[53]. Lactate also suppresses glycolysis in the RPE that 
further preserves glucose for use by photoreceptors [54]. 
Without an intact RPE, critical processes such as photo-
receptor morphogenesis and metabolic homeostasis are 
impaired and photoreceptor cells are likely to undergo 
degeneration [55, 56].

A prominent characteristic of early AMD is the accu-
mulation of drusenoid deposits in the subretinal space 
and the thickening of the Bruch’s membrane [39]. Pos-
sible contributing factors to these pathological changes 
include malfunction of macrophages that fail to remove 
cell debris from subretinal space [57], dysregulation of 
lipid metabolism associated with aging [58], and accumu-
lation of lipoproteins in Bruch’s membrane [59]. In addi-
tion, disturbed protein homeostasis plays a central role in 
this process. In human donor eyes, accumulation of amy-
loid β, a major component of amyloid plaques found in 
the brains of the patients with Alzheimer’s disease, was 
observed in drusen, correlating with complement activa-
tion and RPE/photoreceptor degeneration in AMD [60–
63]. Ubiquitin-positive aggregates were also identified in 
soft and hard drusen in aged human retinas [30]. These 
findings suggest an implication of protein dyshomeosta-
sis in the pathogenesis of AMD. In parallel with drusen 
formation, accumulation of lipids and protein modifica-
tions in the extracellular matrix leads to structural and 
compositional changes in Bruch’s membrane (reviewed 
in [64]). These changes impair the bidirectional nutri-
ent transfer from the RPE to the choriocapillaris, further 
contributing to RPE and photoreceptor degeneration.

In response to nutrient shortage and disturbed metab-
olism, cells activate adaptive signaling pathways and mol-
ecules, among which is the AMPK/mammalian target of 
rapamycin (mTOR) pathway [65]. Activation of AMPK 
increases energy production and regulates a wide variety 
of metabolism-related stress responses, such as anti-oxi-
dant defense, autophagy and mitophagy [66]. In the RPE 
from human donor eyes with AMD, AMPK activity was 
drastically reduced, suggesting that insufficient AMPK 
activation may be implicated in AMD [65]. Pharmaco-
logical activation of AMPK by metformin (1,1-dimeth-
ylbiguanide hydrochloride) protects photoreceptors 
and the RPE from light- and oxidative stress-induced 
damage [67]; conversely, retina-specific knockout of 
AMPK leads to retinal dysfunction and age-related 
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neurodegeneration, suggesting an essential role of AMPK 
in retinal neuronal survival and function [68]. Interest-
ingly, conditional deletion of AMPK in the neuroretina 
also induces a secondary degeneration of the RPE, which 
is perhaps not surprising given the close interdependence 
between the RPE and the retina as a metabolic ecosys-
tem. In contrast, in the context of glaucoma (discussed 
below), hyperactivation of AMPK results in significant 
morphological changes and functional decline in RGCs, 
whereas depletion of AMPK rescues both structure and 
function in RGCs [69]. These discrepant results suggest 
that AMPK may activate distinct downstream pathways 
that exert varying or even opposite effects on cell metab-
olism and stress response in different cell types (i.e. RPE 
cells and RGCs). Therefore, understanding cell-specific 
signaling pathways in response to distinct stressors is 
critical to the formulation of effective interventions.

Closely related to dysregulation of cellular metabolism 
are increased oxidative stress and ER stress, which play a 
major role in RPE damage and AMD pathogenesis [39]. 
Recent work highlights a close interplay between these 
two types of stress [58, 70]. Cigarette smoke, a major 
environmental risk factor, activates oxidative stress and 
ER stress in RPE cells resulting in RPE apoptosis and 
cell death, disruption of the barrier function, and thick-
ening and deposit accumulation on Bruch’s membrane 
[71–75]. Inhibition of ER stress or reduction of oxida-
tive stress both protect RPE cells from cigarette smoke 
extract (CSE)-induced apoptosis and cell death [74, 76]. 
Moreover, alleviating ER stress significantly reduces 
mitochondrial fragmentation and decreases reactive oxy-
gen species (ROS) generation in CSE-challenged RPE 
cells, further suggesting a close interplay between ER 
stress and oxidative stress [76]. Increased oxidative stress 
stimulates an upregulation of genes, such as transcrip-
tion factor, Nrf2, to restore redox homeostasis [76]. In 
aging RPE, the Nrf2 signaling was found less functional 
in response to oxidative stress, which makes aging RPE 
vulnerable to oxidative damage [77]. Overexpression of 
Nrf2 significantly improves survival and barrier function 
of RPE cells challenged with oxidative stress and in ani-
mal models of retinal degeneration [78]. Genetic and/or 
pharmacological approaches to enhance Nrf2 function 
hold great promise for developing new treatments for 
AMD and other retinal degenerative diseases.

Like oxidative stress, ER stress has been implicated 
in the RPE pathologies associated with AMD [3, 74, 
76, 79, 80]. In response to ER stress induced by CSE, all 
three UPR branches can be activated [76]. Among these 
branches, the IRE1/XBP1 pathway has been shown to 
be essential for RPE survival and function during stress 
conditions and for maintaining the RPE structural integ-
rity by regulating calcium-dependent RhoA/Rho kinase 

signaling and actin cytoskeleton organization [74, 79, 
80]. In human RPE cells, inhibition of XBP1 intensifies 
CSE-induced apoptosis; in contrast, suppression of the 
PERK/ATF4/CHOP pathway improves RPE cell sur-
vival, suggesting that the XBP1 pathway and the PERK/
ATF4/CHOP pathway play differential roles in RPE sur-
vival during AMD [74]. Interestingly, despite the pro-
apoptotic role of CHOP in mediating ER stress-related 
cell death in many cell types, silencing of CHOP gene in 
the RPE results in reduced Nrf2 activation and a marked 
increase in apoptosis [76]. Similarly, deficiency of CHOP 
advances rod photoreceptor cell death in degenerative 
retinal diseases such as Retinitis Pigmentosa [81]. These 
results suggest that maintaining a certain level of CHOP 
is necessary for Nrf2 activation and cell survival in the 
RPE and photoreceptors during stress conditions. How-
ever, excessive CHOP activation by ER stress can be 
detrimental to cell survival and function contributing to 
neurodegeneration [82].

Past studies have highlighted the importance of molec-
ular chaperone proteins in protecting the RPE during 
AMD pathogenesis. Endoplasmic reticulum protein 29 
(ERp29) is a multifunctional ER chaperone belonging to 
the protein disulfide isomerase family. As a putative ER 
chaperone, ERp29 facilitates the folding and trafficking 
of secretory and membrane proteins, such as connexin 
43, which is an integral membrane protein that forms 
the gap junctions [83]. In addition, ERp29 functions as a 
regulator of cellular stress response by direct interacting 
with PERK and ATF6 in the UPR pathways and upregu-
lating/enhancing the function of other ER chaperones 
(reviewed in [84]). While highly expressed in normal 
secretory epithelial cells, the levels of ERp29 were found 
significantly reduced in the RPE in both AMD patients 
and cells exposed in  vitro to CSE. Overexpression of 
ERp29 protected RPE cells from CSE-induced ER stress, 
tight junction damage, and apoptosis. In contrast, ERp29 
knockdown leads to decreased activation of the ATF6 
pathway, reduced levels of p58IPK and Nrf2, and increased 
p-eIF2a and CHOP activation resulting in exacerbated 
CSE-triggered cell death [84–86]. Future studies are war-
ranted to investigate the therapeutic potential of target-
ing specific protective UPR pathways, such as XBP1, or 
associated molecular chaperone proteins, such as Erp29, 
to restore the ER and protein homeostasis, for prevent-
ing RPE and photoreceptor damage in animal models of 
AMD.

Retinitis Pigmentosa
Retinitis Pigmentosa (RP) represents a group of rare 
genetic diseases where mostly rod-specific gene muta-
tions cause slow and progressive rod, and subsequently 
secondary cone, degeneration leading to vision loss [87]. 
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Genetic mutations in over 50 causal genes of RP have 
been identified [88]. In part due to the diversity and rela-
tive rarity of each mutated gene, currently there is only 
one Food and Drug Administration-approved treat-
ment for RP, specific to the RPE65 mutation [89]. RPE65 
encodes an all-trans retinyl ester isomerase in the RPE 
essential for production of the photopigment 11-cis-ret-
inal. More common forms of RP are associated with mis-
folding of proteins caused by mutations of the rhodopsin 
gene (RHO). The resultant rhodopsin protein is a seven-
transmembrane G-protein-coupled receptor responsible 
for initiating the phototransduction cascade in rod pho-
toreceptor cells [88, 90, 91]. Over 200 mutations of the 
RHO gene have now been identified and may be inher-
ited in an autosomal dominant or less frequently in an 
autosomal recessive manner [92, 93]. Autosomal reces-
sive RP (arRP) is characterized by homozygous recessive 
inheritance of loss-of-function RHO mutations, such as 
those found in Receptor Expression Enhancer Protein 6 
(REEP6). Mutant REEP6 proteins lead to retinal degen-
eration through defective formation and localization of 
guanyl cyclases and consequent alteration of the pho-
totransduction pathway [94–96]. More commonly impli-
cated, autosomal dominant RP (adRP) mutations such 
as P23H (proline substituted by histidine at position 23) 
and T17M (threonine substituted by methionine at posi-
tion 17) are thought to be responsible for 20–30% of all 
adRP cases [91, 92]. These mutations have been shown 
to increase ER stress and activate the UPR and ERAD 
pathways in photoreceptors [97]. Selective activation of 
IRE1 decreases misfolded rhodopsin proteins in both the 
P23H and T17M models as well as a non-class II mutant 
rhodopsin, S334ter rhodopsin, in part through degra-
dation by both ERAD and regulated IRE1-dependent 
mRNA decay (RIDD) [98]. Recent studies have shown 
that robust rhodopsin degradation precedes retinal 
degeneration and the IRE1 signal transduction pathway 
remains activated even after photoreceptor degenera-
tion plateaus [33, 99]. Further evidence of the benefi-
cial role of IRE1 points to the molecular chaperone, ER 
degradation-enhancing a-mannosidase-like 1 (EDEM1), 
which assists in regulation of protein degradation in the 
ER [100–102]. As a component of the IRE1 pathway, 
EDEM1 accelerates degradation and clearance of P23H 
rhodopsin proteins and in doing so may also promote 
the proper folding and transport of folding-competent 
mutant proteins [102]. This suggests that photoreceptor 
death may not be associated with insufficient activation 
of the IRE1 pathway and other pathways may contribute 
to the degeneration process. However, the cytoprotective 
features of the IRE1 pathway, such as EDEM1’s dual role 
of enhancing mutant rhodopsin degradation and pro-
moting folding-competent protein, may prove useful in 

therapeutic interventions aiming to alleviate protein mis-
folding [102, 103].

In contrast to the  IRE1 pathway that promotes pro-
tein folding and ERAD to alleviate ER stress, activation 
of PERK increases the phosphorylation of eIF2α, result-
ing in a decrease in global protein synthesis and an 
increase in ATF4 production [98]. The role of the PERK/
ATF4 pathway in the pathogenesis of RP has been stud-
ied by several groups [104, 105]. Inhibition of PERK with 
GSK2606414A increases the production of both normal 
and mutant rhodopsin proteins resulting in increased 
protein aggregation, reduced photoreceptor survival, 
and decreased visual function. In contrast, enhancing 
eIF2α phosphorylation protects photoreceptors in P23H 
rats, suggesting that PERK activation to reduce global 
protein synthesis thus alleviating protein aggregation 
and ER stress is likely a protective response at the early 
stage of the disease [105]. Despite the early activation 
of PERK protecting photoreceptors again proteotoxic-
ity and ER stress, long-term activation of PERK induces 
an increase in ATF translation and an upregulation of its 
downstream effector CHOP [106]. In T17M RP mouse 
model, elevated ATF4 levels accompanied by increased 
CHOP expression and reduced autophagy contribute to 
photoreceptor degeneration in RP [104]. Intriguingly, 
ablation of CHOP showed no effect on reducing photore-
ceptor death in two RP models [81, 107]. The mechanism 
behind these observations is not well understood, but 
earlier studies revealed that deletion of CHOP reduces 
protein expression of Nrf2, a key protective factor 
against oxidative damage, in the RPE [76]. Investigation 
of the downstream targets of CHOP in photoreceptors 
may provide new insights into the role of CHOP in RP. 
In addition, the protective effects of the PERK pathways 
are likely necessary for long-term photoreceptor survival 
and visual function in adRP by reducing mutant rhodop-
sin retention in the ER and diminishing rod photorecep-
tor degeneration [33]. This duality of the PERK signaling 
pathway may be specific to adRP models, wherein ER 
stress induced by protein misfolding can be alleviated by 
reduction of overall protein synthesis and upregulation of 
molecular chaperones [108–111].

In response to rhodopsin misfolding and ER stress in 
photoreceptor cells of adRP, a third UPR pathway, medi-
ated by ATF6, is also activated [112]. Activation of ATF6 
upregulates ER chaperones, such as GRP78, to promote 
protein folding and restore ER homeostasis [113] [99, 
111]. In addition, selective activation of ATF6 provides 
a protective action that can be closely tied to processes 
ensuring proper ER folding, such as ERAD. Independ-
ent of IRE1 and PERK, selective activation of ATF6 
upregulated HMG-CoA reductase degradation protein 1 
(HRD1) – dependent ERAD of amyloid precursor protein 
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[114]. In adRP models, activation of ATF6 decreased the 
levels of class II mutant rhodopsin, including P23H and 
T17M, while sparing monomeric WT rhodopsin pro-
duction [98]. As with the IRE1 pathway, elucidating the 
role of molecular chaperones involved in specific UPR 
branches may improve targeted gene therapies for adRP. 
Recent findings demonstrated that intravitreal AAV 
injection of the GRP78 chaperone alleviates ER stress, 
suppresses apoptosis, and improves ERG responses in 
a rat P23H RHO model [114]. GRP78 alongside the co-
chaperone and ER DNAJ protein 5 (ERdj5/DNAJC10) are 
also required for formation of the C110-C187 disulfide 
bond in WT rhodopsin. Knockdown of ERjd5 decreased 
expression of WT and mutant P23H rhodopsin, suggest-
ing the importance of DNAJ proteins in maintaining the 
ER stress response [110, 115]. Viral-mediated overexpres-
sion of GRP78 and ERdj5 further supports these findings 
with results showing an overall reduction in ER stress 
and enhanced photoreceptor cell survival in the P23H 
RHO mouse model [110, 114, 116]. Although ATF6 sign-
aling ensures degradation of mutant rhodopsin proteins 
present in RP, it cannot regulate proper folding of mutant 
rhodopsin [111]. This contrasts with ER chaperones 
downstream of IRE1, like EDEM1, which possess both 
improved mutant rhodopsin degradation and restoration 
of folding-competent P23H rhodopsin [102]. Altogether, 
these recent findings elucidating the proposed mecha-
nism of each UPR pathway presents new opportunities 
for targeted therapies focusing on individual branches of 
the UPR and their co-chaperones [98, 111, 114].

Achromatopsia
Achromatopsia is a rare autosomal recessive disorder 
characterized by impaired cone photoreceptor function, 
leading to decreased visual acuity beginning at birth or 
early infancy, nystagmus, and reduced or absent color 
vision [117–119]. Six genes have been identified in close 
association with achromatopsia, including the gene 
encoding ATF6. Mutations of ATF6 result in autosomal 
recessive retinal cone dystrophy and convey increased 
susceptibility to ER stress from hypoxia, protein mis-
folding, and light damage [120–122]. In animal models, 
global ATF6 knockout mice show normal retinal mor-
phology and function at a young age but develop photo-
receptor dysfunction with increasing age [117]. Knockout 
of ATF6 in a P23H-KI model of RP impairs rhodopsin 
clearance and accelerates retinal degeneration and func-
tional deficits [112]. A phenotypic correlation is seen in 
patients with ATF6 mutation-induced achromatopsia 
who present foveal hypoplasia, supporting a role of ATF6 
in cone development [117, 121, 123]. Interestingly, using 
human stem cell-derived retinal organoids, a recent study 
shows that genetic variants that disrupt ATF6 function 

lead to impaired cone development and a loss of cone 
OS/IS [120]. The contradictory results from human and 
animal studies are believed to be associated with the 
intrinsic biologic differences and environmental factors 
that influence the role of ER stress and the UPR path-
ways in murine and human retinal development [117, 
120, 123]. In addition, further insight into the presence of 
non-functioning peripheral cones may offer advances in 
pre-existing therapeutic interventions, such as gene ther-
apy for achromatopsia associated with GNAT2, CNGA3, 
and CNGB3 mutations [117, 124, 125].

Recent investigations into the associations between 
ATF6, photoreceptor integrity, and achromatopsia reveal 
the diversity among the roles and potential mutations 
of ATF6. Current studies have begun to highlight these 
diverse molecular defects and the associated defects seen 
in specific steps of ATF6 activation. For example, Class 
1 ATF6 mutants possess impaired trafficking from the 
ER to the Golgi apparatus whereas Class 3 mutations 
show an impaired basic leucine zipper (bZIP) domain 
[126]. Further exploration into the stepwise activation of 
ATF6 may prove of use for potential therapeutic strate-
gies, including gene replacement therapy for defective 
transcriptional activators and gene editing for mononu-
cleotide mutations. ATF6 small molecule agonists, such 
as ATF6-activating (AA) compounds AA147 and AA263, 
and antagonists, such as Ceapin-A7, have been shown 
to selectively modulate the ATF6 arm of the UPR path-
way [108, 127, 128], Downstream targets of ATF6 may 
also serve as potential targets in achromatopsia. As seen 
in adRP models, overexpression of GRP78 and ERdj5 by 
AAV mediated delivery decreases aggregation of mutant 
proteins and may be possible regulators of ATF6 translo-
cation to the nucleus [114, 116]. Although ATF6 is essen-
tial for regulating ER stress in retinal photoreceptors, 
the mechanisms behind ATF6-associated achromatopsia 
and its preference for central cone photoreceptor degen-
eration remains unclear. Future therapeutic interventions 
for achromatopsia, or any other AT6-associated disease 
conditions, must take into account that modulating ATF6 
activation in cones may have catastrophic consequences 
for color vision. Thus, strategies targeting individual cell 
types (e.g. through specific viral variants) or specific 
regions (e.g. outer retina) should be considered over 
broad or systemic treatments.

Glaucoma
Glaucoma is a leading cause of irreversible blindness 
characterized by progressive degeneration of RGCs 
and their axons resulting in a loss of visual field and 
central vision, if left untreated. In 2013, approximately 
64.3 million people aged 40–80 years worldwide were 
affected by primary open-angle glaucoma (POAG) 
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and primary angle-closure glaucoma (PACG) and 
the numbers were estimated to increase to 76.0 mil-
lion in 2020 and 111.8 million in 2040 [129]. Vision 
loss in glaucoma often starts from the periphery and 
progresses without noticeable symptoms in patients 
until late stages. Thus, RGCs undergo a prolonged 
course of degeneration after the disease onset, which 
provides a valuable window for intervention upon a 
timely diagnosis. Glaucoma is multifactorial disease. 
Among many identified risk factors, elevated intraoc-
ular pressure (IOP) is the most predominant, and the 
only modifiable factor causing RGC degeneration. An 
increase in the IOP occurs as a result of a buildup of 
aqueous humor due to reduced drainage of aqueous 
fluid caused by a stiff and less permeable trabecular 
meshwork (TM) and increased outflow resistance at 
the TM [130, 131]. In addition to increased stiffness of 
the TM, there is also morphological and biochemical 
changes including extracellular deposits within the cri-
briform layer of the TM [132]. Current clinical treat-
ment for glaucoma focuses on pharmacological, laser, 
or surgical therapies to lower IOP, either by increasing 
aqueous humor drainage or decreasing its production 
[133]. Experimentally, multiple mouse models have 
been developed to recapitulate increased IOP using 
a variety of techniques including intracameral injec-
tion of microbeads, laser photocoagulation, episcleral 
vein cauterization, and injection of hypertonic saline 
and hyaluronic acid [134]. Increased IOP leads to loss 
of RGCs and their axons and optic-disc cupping, sug-
gesting a causal role of high IOP in glaucomatous RGC 
damage and neuropathy [134].

Genetic factors play an important role in the patho-
genesis of glaucoma. Recent studies have identified 
multiple genomic loci and genetic variants that con-
tribute to glaucoma development [135–137]. Paired 
Box Gene 6 (PAX6) is a transcription factor that 
regulates development of the eye and its dysregula-
tion or mutation can lead to aniridia (a complete or 
partial absence of the iris) and congenital glaucoma 
[136, 138]. CAV1/CAV2 are genes that encode caveo-
lin-1 and caveolin-2 proteins, respectively, which can 
bind to cholesterol and are therefore important in 
maintaining membrane homeostasis and cholesterol 
metabolism, as well as regulating TM outflow [135, 
139]. GAS7 encodes growth arrest-specific protein 
7, which plays a pivotal role in cell division and neu-
ronal development [135, 137, 140]. These findings not 
only provide insights into the molecular mechanisms 
of glaucoma but also present an opportunity for devel-
oping genetic screening for early diagnosis and poten-
tially for gene therapy or overexpression of functional 
proteins in RGCs.

Cell stress signaling in TM cell damage and increased IOP
Multiple studies have shown that dysregulation of the 
UPR pathways in TM cells are involved in the develop-
ment of glaucoma. It is important to understand the 
mechanisms that lead to ER stress in TM cells in order 
to prevent the subsequent damage. Mutations in the 
MYOC gene, which encodes myocilin protein, have been 
linked to increased IOP in juvenile open-angle glaucoma 
(JOAG) and adult-onset POAG [141]. Mechanistically, 
mutations of myocilin cause protein misfolding result-
ing in accumulation of misfolded myocilin proteins in 
the ER and increased ER stress in TM cells [142, 143]. 
Treatment with phenylbutyric acid (PBA), a chemical 
chaperone that promotes protein folding and alleviates 
protein aggregation thus reducing ER stress, success-
fully prevents TM cell death and lowers IOP in glaucoma 
models associated with MYOC mutations [142]. In addi-
tion, mutant myocilin proteins interact with components 
of the extracellular matrix (ECM), including fibronectin, 
elastin, and collagen type IV and I, resulting in aberrant 
accumulation of ECM proteins in the ER and dysregula-
tion of the ECM, which contributes to reduced outflow 
of aqueous humor and increased IOP in some glaucoma 
cases [144]. Inhibition of PERK by GSK2606414 reduces 
cell survival, while activation of this pathway by salubri-
nal, which inhibits elF2α dephosphorylation, increases 
cell survival, suggesting a protective effect of PERK acti-
vation in stressed TM cells [145]. Interestingly, in another 
study, inhibition of PERK by LDN-0060609 was shown to 
reduce DNA damage, improve cell survival and restore 
cell function in human TM cells [146]. The paradoxical 
results from the two studies may be in part attributable 
to the specific pharmacological inhibitors or stress con-
ditions; further investigation of these compounds and 
which downstream pathways they affect is essential for 
the development of therapies that incorporate them.

ATF4 is a major downstream effector in the PERK 
pathway and studying this component of the pathway 
can help to better understand the conflicting evidence 
previously discussed on PERK. In this mechanism, elF2α 
phosphorylation increases ATF4 protein production 
while reducing global protein translation. As a transcrip-
tion factor, ATF4 binds to the promotor of the aquaporin 
1 (AQP1) gene and negatively regulates its transcription 
in TM cells [146, 147]. Reduced expression of AQP1 
is believed to be responsible for increased resistance to 
aqueous humor outflow that leads to elevated IOP in 
glaucoma associated with increased endothelin-1 (ET-
1) level in aqueous humor [147]. In addition, activation 
of the elF2α/ATF4/CHOP pathway increases apoptosis 
and inflammation in human TM cells, in part through 
promoting ER stress-induced apoptosis, increasing ROS 
production, upregulating inflammatory genes such as 
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endothelial-leukocyte adhesion molecule 1 and Interleu-
kin 8 [148]. Activation of ATF4 also results in increased 
protein synthesis that increases the ER protein load, 
thereby exacerbating ER stress in TM cells [149]. Impor-
tantly, increased ATF4 and CHOP expression have been 
observed in TM from patients with POAG, suggesting 
that the activation of ATF4/CHOP pathway is implicated 
in TM cell injury and IOP increase in human glaucoma 
[148–150]. In addition to primary glaucoma, elevated 
ER stress in TM cells has been implicated in dexameth-
asone-induced ocular hypertension, which resembles 
glucocorticoid-induced glaucoma in human patients 
[151]. Relative to the ATF4/CHOP pathway, the impli-
cation of the IRE1/XBP1 and ATF6 UPR branches in ER 
stress-associated TM cell dysfunction and cell death are 
less well studied (Fig. 2). Future studies are warranted to 
investigate whether targeting these understudied UPR 
pathways may lead to new avenues for reducing TM 
injury and inflammation in glaucoma models.

Cellular stress signaling in RGC damage
Like in TM cells, ER stress plays a pivotal role of in 
RGC cell death associated with glaucoma [152–155]. 
Some examples are RGC injuries caused by genetic 
variants of transmembrane and coiled-coil domain 1 
(TMCO1) and optineurin (OPTN). TMCO1 encodes 

a transmembrane protein of the ER and functions as a 
calcium leak channel to prevent calcium overload and 
maintain calcium homeostasis in the ER [156]. TMCO1 
is expressed ubiquitously in the body with high expres-
sion in RGCs and a genetic variant was recently identi-
fied as a risk factor for POAG [157, 158]. Deficiency or 
dysfunction of TMCO1 induces calcium overload in the 
ER, which in turn causes disturbance in protein synthe-
sis and folding resulting in ER stress. Dysregulation of 
calcium signaling also increases ROS generation, over-
activates mitophagy resulting in mitochondrial dam-
age and impaired respiratory function, and promotes 
apoptosis [157, 159, 160]. OPTN encodes a protein 
that functions as a primary receptor of mitophagy and 
multiple mutations of OPTN protein have been identi-
fied associated with POAG [161]. Among these muta-
tions, E50K is considered the most prevalent and is 
associated with normal-tension glaucoma, a subtype of 
POAG [162]. Overexpression of E50K mutant optineu-
rin induces mitochondrial fission and enhanced mito-
chondrial degradation and mitophagy resulting in RGC 
degeneration [162]. Dysregulation of mitochondrial fis-
sion and mitophagy increases oxidative stress, which 
further intensifies mitochondrial dysfunction and dam-
age resulting in a vicious cycle ultimately contributing 
to RGC cell death [163]. Another glaucoma-associated 

Fig. 2  Implication of the UPR pathways in the pathogenesis of glaucoma. Left panel: Mutations of MYOC gene and other factors induces ER stress 
resulting in activation of the PERK/ATF4/CHOP pathway. Activation of this pathway leads to increased reactive oxygen species (ROS), inflammation, 
and DNA damage, promoting TM cell apoptosis. In addition, ATF4 increases TM stiffness contributing to reduced outflow of aqueous humor and 
increased IOP. Right panel: ER stress is induced by multiple factors, including mutations of genes such as TMCO1 and OPTN, increased IOP, ischemia, 
and others, in retinal ganglion cells (RGCs) during glaucoma. Activation of XBP1 increases expressions of ER chaperones and neurotrophic factors, 
such as brain derived neurotrophic factor (BDNF), p58IPK, and mesencephalic astrocyte-derived neurotrophic factor (MANF), reducing apoptosis of 
RGCs. Activation of ATF4/CHOP, mitochondrial dysfunction, and calcium dyshomeostasis, contribute to RGC cell death and degeneration
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mutation of OPTN, 691_692insAG (or 2bpIns-OPTN), 
was shown to increase ER stress and upregulate CHOP 
expression resulting in cell death [164]. Future studies 
should investigate whether inhibition of ER stress pre-
vents RGC degeneration induced by OPTN mutations 
in animal models of glaucoma.

AMPK is an energy sensor and a master regulator of 
cellular metabolism and mitochondrial dynamics [34]. 
However, the role of AMPK in regulation of energy 
homeostasis and mitochondrial function in RGCs and 
glaucoma appears to be less thoroughly investigated. 
A recent study demonstrates that AMPK is activated in 
RGCs in an ocular hypertension mouse model and in 
human glaucomatous retina tissue from patients with 
POAG [69]. Sustained activation of AMPK triggers RGC 
dysfunction and leads to RGC dendritic retraction and 
synapse elimination through inhibiting mammalian tar-
get of rapamycin complex 1 (mTORC1). Furthermore, 
when AMPK is depleted, RGC survival and retinal func-
tion is improved. These results suggest that chronic 
AMPK activation contributes to RGC cell death per-
haps by inhibiting the energy consuming processes such 
as synaptic transmission and axon transport [69]. This 
finding is in apparent contrast to the protective role of 
AMPK in AMD (as described above) in which activa-
tion of AMPK mitigates photoreceptor and RPE degen-
eration. These discrepancies highlight the importance in 
understanding the signaling pathways in each specific 
type of neurons, which may possess unique mechanisms 
to combat different stresses and disease conditions.

In addition to metabolic disturbance, ER stress has 
been observed in RGCs in several animal models of glau-
coma, including microbeads-induced ocular hyperten-
sion model, optic nerve crush model, and DBA/2 J (D2) 
mouse model [165–167]. Activation of the UPR pathways 
appears to play differential roles in glaucomatous RGC 
damage. Activation of the IRE1/XBP1 pathway protects 
RGCs from ER stress-induced damage in part through 
increasing expression of brain derived neurotrophic fac-
tor (BDNF); conversely, activation of the PERK-eIF2α-
CHOP pathway can trigger RGC apoptosis [167, 168]. 
Combining the two approaches of over-expression of 
XBP1 and inhibition of eIF2α phosphorylation has been 
shown to not only protect RGC survival but also protect 
against axon degeneration and improve visual function 
in mouse models of traumatic optic nerve injury and 
microbeads-induced ocular hypertension [166]. How-
ever, in DBA/2 J mice deletion of CHOP results in mod-
est protection to the RGC soma but does not protect 
against RGC axonal degeneration [165]. This could sug-
gest that additional downstream effectors in the PERK/
eIF2α pathway could be involved in RGC injury related 
to glaucoma.

Recent work demonstrates a potential role of an ER-res-
ident chaperone p58IPK in RGC survival in glaucomatous 
conditions [169–171]. p58IPK is a multifunctional pro-
tein that acts as a co-chaperone of GRP78 in the process 
of protein folding and also plays a role in regulation of 
eIF2α phosphorylation, and thereby protein production, 
by inhibiting eIF2α kinases including double-stranded 
RNA-dependent protein kinase R [172–176], PERK [177, 
178], and GCN2 (general control nonderepressible 2) 
[179]. p58IPK is highly expressed in the neural retina and 
its expression is upregulated under ER stress conditions 
[169]. Deletion of p58IPK results in fewer RGCs, accom-
panied by increased levels of CHOP and Bax (Bcl-2 
Associated X-protein) in the retina of p58IPK knockout 
(KO) mice, and moreover, the p58IPK KOs are highly sus-
ceptible to ischemia-induced RGC loss compared to the 
wild-type animals. Conversely, overexpression of p58IPK 
attenuates oxidative stress and ER stress-induced apop-
tosis of cultured neural cells, suggesting a protective role 
of p58IPK in retinal neurons [169]. Overexpressing p58IPK 
using AAV protects against ER stress-induced cell death 
in cultured primary RGCs from both WT and p58IPK 
knockout mice [171]. In addition to p58IPK, recent stud-
ies identified mesencephalic astrocyte-derived neuro-
trophic factor (MANF) as an ER-localized neurotrophic 
factor, which inhibits ER stress-induced cell death of 
retinal neurons and improves RGC survival in a rat glau-
coma model [171]. Therefore, enhancing the function of 
ER chaperones like p58IPK and MANF to restore protein 
homeostasis may offer exciting therapeutic potential for 
glaucomatous RGC degeneration (Fig. 2).

Diabetic retinopathy
Diabetic retinopathy (DR) is a major complication of dia-
betes characterized by progressive neurovascular injury 
and degeneration in the retina and is the most frequent 
cause of blindness in working-age adults. According to 
clinical manifestations, DR is classified into two large cat-
egories: non-proliferative DR (NPDR) and proliferative 
DR (PDR), representing the early and advanced stages of 
the disease, respectively. Major pathological characteri-
zation of NPDR includes retinal hemorrhages, microa-
neurysms, microvascular abnormalities, while PDR is 
distinguished by the development of retinal neovasculari-
zation (NV) due to aberrant blood vessel growth from the 
retina into the vitreous [6, 180, 181]. The fragile and mal-
structured blood vessels of retinal NV are prone to leak-
age and rupture, resulting in severe vitreous hemorrhage, 
fibrosis, tractional retinal detachment, and vision loss 
[180–182]. Leakage of injured retinal blood vessels and 
disruption of the BRB can also occur at early stages of 
DR, resulting in exudates and fluid accumulation in reti-
nal tissue and thickening of the retina, known as diabetic 
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macular edema (DME). DME is the most frequent cause 
of central vision loss in diabetic patients. In addition to 
vascular lesions, recent work recognizes the importance 
of diabetes-induced neural retina dysfunction and neuro-
degeneration in DR, although effective treatment for pro-
tection of retinal neurons and prevention of vision loss 
in DR is not yet available [183–187]. Currently, clinical 
managements for DR focus primarily on reducing vascu-
lar pathologies using a combination of anti-VEGF ther-
apy, laser photocoagulation, and surgical treatment [188]. 
In many patients, in particular those with advanced DR, 
successful treatment in correcting vascular abnormalities 
and restoring the anatomical structure of the retina does 
not result in significant visual improvement [189]. New 
approaches to protect retinal cells and improve retinal 
function are urgently needed.

A number of molecular pathways and cellular pro-
cesses, such as oxidative stress, ER stress, and inflamma-
tion, have been proposed in DR pathogenesis. Oxidative 
stress is considered a primary cause of retinal vascular 
damage in diabetes [190]. Major pathways contributing 
to ROS generation in diabetic retinal cells include acti-
vation of polyol and hexosamine biosynthetic pathways, 
advanced glycation end product (AGEs) production, pro-
tein kinase C (PKC) activation, mitochondrial dysfunc-
tion, and NADPH (nicotinamide adenine dinucleotide 
phosphate) oxidase activation [181, 191]. In addition, 
defects in the anti-oxidant defenses that scavenge free 
radicals and reduce oxidative stress also contribute to 
oxidative damage in the diabetic retina [192]. Studies 
have shown that during diabetes the DNA binding abil-
ity of Nrf2 is significantly reduced in retinal cells, and 
in contrast, the binding between Nrf2 and its inhibitor, 
Kelch like-ECH-associated protein 1 (Keap1) is increased 
resulting in enhanced Nrf2 degradation and decreased 
Nrf2 translocation to the nucleus [193, 194]. Inhibition 
of Keap1-Nrf2 interaction by small molecules to promote 
Nrf2 nuclear translocation and transcription activation 
of anti-oxidant defense genes alleviates oxidative stress, 
protects retinal cells from ischemic and inflammatory 
injury, and mitigates diabetic vascular damage [193, 195]. 
These findings suggest that targeting the anti-oxidant 
defense system and enhancing the cellular response to 
dampen oxidative stress and minimize oxidative damage 
of retinal cells could be a promising strategy for preven-
tion and treatment of early-stage DR.

In addition to oxidative stress, ER stress has been 
shown to play a significant role in diabetes-associated 
retinal inflammation, endothelial cell injury, vascular 
leakage and vascular degeneration (Fig.  3) [196–202]. 
Recent studies also highlight the importance of the UPR 
signaling in maintaining retinal neuronal function and 
preventing neurodegeneration in diabetic conditions 

[203, 204]. Activation of the IRE1/XBP1 and PERK/
ATF4/CHOP pathways differentially regulate retinal 
endothelial cell death, inflammation, and vascular per-
meability in animal models of diabetes [196, 199, 200, 
205–207]. Preconditioning with mild ER stress acti-
vates XBP1-dependent UPR pathways, reducing retinal 
endothelial inflammation and vascular leakage [197]. 
Conversely, loss of XBP1 induces Müller glia activation 
and promotes retinal inflammation in DR [208]. More-
over, cells deficient of XBP1 are susceptible to oxidative 
stress-induced apoptosis and cell death and tight junc-
tion damage [74, 76, 79, 80]. These findings imply a vital 
role of XBP1 in maintaining cellular function and integ-
rity in diabetic retinas. Conditional knockout of XBP1 
in retinal neurons leads to early onset retinal function 
decline, neuronal loss, and enhanced Müller glia acti-
vation in diabetic mice [203], suggesting that the XBP1 
pathway is critical for neuronal protection against dia-
betes induced retinal injury and dysfunction.

The retina has high metabolic demands to support 
its function in generating and transmitting visual sig-
nals and maintain the normal structure of photorecep-
tors. In diabetes, retinal metabolism is disrupted due 
to elevated glucose levels, correlated with enhanced 
glycolysis and sorbitol oxidation, which has been impli-
cated in the pathogenesis of DR [209–211]. Diverting 
upstream metabolites from glycolysis into other path-
ways, such as the hexosamine, diacylglycerol (DAG)/
PKC, and AGE pathways, leads to endothelial injury 
in diabetes [212]. Systemic reduction of GLUT1 or 
deletion of GLUT1 in retinal neurons prevents polyol 
accumulation and improves retinal function in diabetic 
animals, suggesting a role of metabolic dysregulation 
in neurodegeneration in DR [209]. In addition, mito-
chondrial dysfunction and damage leads to reduced 
mitochondrial respiratory activity further contribut-
ing to the imbalance between glycolysis and oxidative 
phosphorylation in diabetic retinal cells [reviewed in 
[213]. As a major cellular stress response, the UPR has 
been shown to play an important role in regulation of 
glucose metabolism in retinal cells [18, 214]. The IRE1 
branch functions as a nutrition sensor in cells under 
starvation and induces activation of XBP1 to restore 
energy homeostasis [215]. In glioma cells, silencing 
XBP1 suppresses hexokinase-2 (HK2) therefore inhib-
iting glycolysis and resulting in cell death [216]. Con-
ditional knockout of XBP1 in retinal cells also leads to 
reduced glycolysis associated with retinal dysfunction 
and neurodegeneration [18], suggesting a role of XBP1 
in regulation of retinal neuronal glycolysis. The exact 
function of XBP1 and other UPR pathways in regula-
tion of retinal metabolism during diabetes remains to 
be elucidated.
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Conclusions
The long-term and constant requirement for the retina 
to maintain protein and metabolic homeostasis is criti-
cal for preserving normal visual function and preventing 
retinal neurodegeneration throughout the lifetime. Stud-
ies over the past two decades have laid a groundwork for 
understanding how elements of the UPR respond to vari-
ous stressors during aging and in common retinal dis-
ease conditions including AMD, RP, glaucoma, and DR 
in humans and in animal models. The findings reported 
so far clearly suggest that activation of the UPR signal-
ing has a significant impact on retinal cell survival and 
function, not only through governing the homeosta-
sis of protein production, modification, trafficking, and 

degradation, but also via regulation of cell metabolism, 
mitochondrial function, and calcium levels. Although the 
interactions between the UPR pathways, as well as their 
involvement in metabolic regulation, can vary in different 
cell types and are not necessarily consistent between dis-
ease conditions, the work described in this review pro-
vides hope that targeting the UPR pathways may lead to 
new therapeutic approaches for protecting retinal cells at 
the early stages of neurodegenerative disease.

As discussed earlier, aging is a significant risk factor for 
major neurodegenerative diseases in the retina, as it is for 
Alzheimer’s disease, Parkinson’s disease, and many oth-
ers in the CNS. Aberrant protein aggregation and depo-
sition, along with enhanced protein and lipid oxidation, 

Fig. 3  Role of ER stress and oxidative stress in retinal neurovascular damage in diabetic retinopathy (DR). Disturbance in glucose supply 
(hyperglycemia, hypoglycemia, glucose fluctuation, etc.) leads to metabolic defects, mitochondrial dysfunction, NADPH oxidase activation, resulting 
in increased ER stress and oxidative stress. Enhanced ER stress and oxidative stress play a central role in inducing vascular endothelial cell and 
pericyte damage, blood-retinal barrier (BRB) breakdown, glial activation, inflammation and diabetic macular edema. Cumulative loss of vascular 
cells and capillaries resulting in retinal ischemia, which ultimately leads to retinal neovascularization and neurodegeneration contributing to vision 
impairment in DR
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correlate with chronic ER stress and oxidative stress in 
aging retinal tissue [18, 30, 217, 218]. While the disrup-
tion of proteostasis can be attributable to declined abil-
ity to activate the protective UPR pathways in aged cells 
[18], the mechanisms behind the dysfunction of the UPR 
during aging remain poorly understood. Several factors 
have been proposed to potentially mediate the failure of 
sensing ER stress and activation of the UPR, including 
disturbed redox balance in the ER, dysregulated calcium 
homeostasis, and increased nitrosylation of ER stress 
sensors and ER chaperones or foldases [219]. Whether 
targeting these factors could restore the function of the 
UPR in aging and diseased retinal cells warrants future 
investigation.

Another interesting question is how the UPR pathways 
interact and reciprocally regulate metabolic signaling 
pathways in retinal cells. The role of the UPR in metabolic 
diseases including obesity and diabetes has been exten-
sively investigated. In addition to restoring the ER and 
protein homeostasis thereby improving cell survival and 
function, the UPR genes have also been shown to inde-
pendently regulate pathways in glucose and lipid metabo-
lism. Furthermore, multiple UPR molecules directly and 
indirectly regulate critical genes responsible for anti-oxi-
dant defense and mitochondrial function. Yet the exact 
mechanisms by which the UPR signaling is implicated in 
metabolic regulation in response to stressors in each dis-
ease condition and in various retinal cell types are largely 
unknown. Understanding the interactions between 
these signaling pathways in coordinating cellular stress 
responses to maintain and improve the capacity for met-
abolic regulation and protein homeostasis could provide 
valuable insight for therapeutic intervention.

It is important to recognize that the retina is capa-
ble of dealing with significant cellular stress on a daily 
basis, often for decades, without significant functional 
decline or neurodegeneration even under disease con-
ditions. The concept that an additional cause, such as 
compromised nutrient sensing due to advanced age 
or the breakdown of the BRB, is required for cellular 
stress response pathways to be overwhelmed thereby 
leading to functional decline and neurodegenera-
tion is particularly intriguing. Recent development of 
new technologies, such as single cell multi-omics that 
enable multiple, and even simultaneous, genetic, tran-
scriptomic, epigenetic, and proteomic analyses from 
individual cells using tissue sections [220], could gen-
erate precise information on the temporal and spatial 
changes of each signaling molecule in the UPR path-
ways in the retina during aging and under disease con-
ditions. Furthermore, the emerging new experimental 
systems, including stem cell-derived human organoids 

and humanized animal models, demonstrate remark-
able advantage in studying human retinal development 
and diseases [221]. Last but not least, the success-
ful discovery of small molecules and pharmacological 
compounds targeting selective UPR signaling (reviewed 
in [108]) provides valuable tools for better understand-
ing the implication of individual UPR pathways in 
disease progression and opens new avenues for devel-
oping drug treatments for retinal protection against 
neurodegeneration.
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