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Abstract

dementia

There is an increasing prevalence of Vascular Cognitive Impairment (VCl) worldwide, and several studies have
suggested that Chronic Cerebral Hypoperfusion (CCH) plays a critical role in disease onset and progression.
However, there is a limited understanding of the underlying pathophysiology of VCI, especially in relation to CCH.
Neuroinflammation is a significant contributor in the progression of VCl as increased systemic levels of the
proinflammatory cytokine interleukin-1(3 (IL-13) has been extensively reported in VCI patients. Recently it has been
established that CCH can activate the inflammasome signaling pathways, involving NLRP3 and AIM2
inflammasomes that critically regulate IL-1(3 production. Given that neuroinflammation is an early event in VCl, it is
important that we understand its molecular and cellular mechanisms to enable development of disease-modifying
treatments to reduce the structural brain damage and cognitive deficits that are observed clinically in the elderly.
Hence, this review aims to provide a comprehensive insight into the molecular and cellular mechanisms involved in
the pathogenesis of CCH-induced inflammasome signaling in VCI.
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Dementia: a focus on vascular cognitive
impairment

Dementia describes a set of symptoms that occur when
the brain is damaged by injury or disease. These com-
monly include progressive deterioration in memory,
thinking and behavior, and ultimately the ability to per-
form everyday activities [1]. Dementia can be caused by
many neurological disorders including Alzheimer’s dis-
ease (AD), frontotemporal dementia, Lewy body demen-
tia and vascular dementia (VaD). An estimated 35.6
million people worldwide were diagnosed with dementia
in 2010, with these numbers expected to double every
20years [2]. In particular, the proportion of VaD
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patients among the entire dementia population is re-
ported to be approximately 15-20% in North America
and Europe [3, 4], and 30% in Asia and developing coun-
tries [5-7].

In recent decades, increasing evidence has shown vas-
cular diseases contributing to cognitive impairment and
memory deficits, with an underlying vascular component
in the etiology of most forms of dementia [8, 9]. Several
studies have shown that with the inclusion of dementia
arising from mixed neuropathologies, the percentage of
the demented population with a contributing vascular
cause may be up to 70% [10, 11]. To effectively target
cognitive impairment due to vascular injury or diseases,
the term Vascular Cognitive Impairment (VCI) was in-
troduced to encapsulate the whole spectrum of disease,
ranging from subjective cognitive impairment, mild cog-
nitive impairment to dementia associated with under-
lying cerebrovascular disease burden [12, 13].
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VCI arises from heterogeneous cerebrovascular path-
ologies with diverse vascular etiologies. From the per-
spective of vascular injury, the origin and type of
vascular occlusion, hemorrhage, distribution of arterial
territories, and vessel size are the common causes of the
types of vascular pathologies due to large vessel diseases,
small vessel diseases, ischemic-hypoperfusive and
hemorrhagic diseases [14]. The underlying vascular eti-
ologies for VCI have been extensively reviewed in the
statement released by the International Society for Vas-
cular Behavioral and Cognitive Disorders (VASCOG)
[15].

Chronic Cerebral Hypoperfusion (CCH): a primary
driver of VCI
Pre-clinical vascular diseases are difficult to detect until
vascular lesions are formed and affect cognitive func-
tions [16]. While numerous lines of evidence have iden-
tified risk factors associated with pre-clinical vascular
diseases and VCI, the mechanisms by which these risk
factors contribute to VCI pathologies resulting in cogni-
tive impairment remain to be fully established [17-19].
Emerging evidence suggests that chronic cerebral hypo-
perfusion (CCH), as a result of vascular disease, could
play a critical role in the pathophysiology of VCI [20-
22]. CCH refers to a condition whereby cerebral blood
flow (CBEF) supply to the brain is reduced by 20 to 40%
over a prolonged period. It can occur either to the whole
brain or within specific brain regions [23, 24]. CCH is
involved in the development of VCI as it is closely-
associated with a number of major physiological vascular
risk factors, VCI pathologies and cognitive decline [20,
25, 26]. It is well established CCH precedes white matter
lesion (WML) formation and the presence of cerebral
hypoperfusion together with white matter lesions, fur-
ther exacerbates the decline in executive function and
memory in VCI patients with dementia [27, 28].
Understanding the effect of CCH on cerebral function
may explain its role in VCI. A continuous CBF plays an
essential role in maintaining the brain’s structural and
functional integrity [29]. At the neurovascular level, con-
tinuous blood supply to the brain parenchyma is neces-
sary for essential functions such as neuronal activity,
blood-brain barrier function and immune cell surveil-
lance [8]. Disruption of blood flow to the brain is associ-
ated with a number of neurovascular dysfunctions such
as endothelial dysfunction, glial activation, demyelination
and blood-brain barrier breakdown as observed in VCI
patients [30—32]. These observations warrant mechanis-
tic investigations of VCI pathogenesis from the perspec-
tive of CCH. Various animal models have been
developed to mimic a state of cerebral hypoperfusion as
observed in VCI patients [33, 34]. By experimentally in-
ducing CCH, these animal models provide a useful
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platform for understanding the underlying pathophysi-
ology of VCI.

Pathogenic molecular mechanisms of CCH

Disruptions to CBF directly results in reduced glucose
and oxygen supply, leading to immediate bioenergetic
impairment and ionic imbalance, and development of
excitotoxicity, oxidative stress and inflammation (Fig. 1).

Bioenergetic impairment and ionic imbalance
Bioenergetic impairment refers to the disruption of cel-
lular energy metabolism. Inadequate blood supply due to
CCH is likely to result in bioenergetic impairments as
neurons are unable to produce sufficient adenosine tri-
phosphate (ATP) for normal cellular functions [35, 36].
Reduction in ATP production leads to compromised
function of ATP-dependent ion channels such as the
Na*/K* and Ca®* pump. The ion channels’ inability to
maintain an ionic balance results in a net Na* and Ca**
influx, and K* efflux across the plasma membrane. Con-
sequently, this increases the resting membrane potential
to threshold, leading to unregulated depolarizations
known as anoxic depolarization in neurons [37, 38].
Studies have provided evidence suggesting bioenergetic
impairment and ionic imbalance caused by CCH [39-41].
Mitochondrial dysfunction has been reported to be evi-
dent in VCI, whereby the expression and activity of mito-
chondrial enzymes that are vital for ATP production and
cellular bioenergetics are reduced in a CCH rodent model
of VCI [39]. Several energy metabolites including ATP
were significantly reduced upon CCH [40]. Impairment in
Na'/K" homeostasis has also been observed with CCH,
with reduced blood flow leading to increased intracellular
Na* concentration and decreased in intracellular K™ con-
centration [35]. Pharmacological inhibition of Ca* influx
offers neuroprotective effects on hippocampal neurons
under CCH, demonstrating the significance of Ca** influx
in mediating CCH-induced injuries [42].

Excitotoxicity

Excitotoxicity is the damage or death of neurons from
the uncontrolled stimulation of excitatory glutamate re-
ceptors and is prevalent during CCH. As neurons
undergo anoxic depolarization during cerebral hypoper-
fusion, there is a resulting influx of Ca®* ions into the
presynaptic neuronal terminals, culminating in a massive
release of the excitatory neurotransmitter glutamate into
the synaptic cleft [35, 43]. Consequently, postsynaptic
glutamate receptors on surrounding neurons become
overstimulated, causing a large influx of Na* and Ca**
ions that trigger the propagation of an uncontrolled
downstream cytotoxic cascade. Accumulation of intra-
cellular Na* creates an osmotic pressure for water to
enter the neuron, leading to cytotoxic swelling and lysis
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Fig. 1 A schematic diagram illustrating the possible pathological mechanisms of VCI. Cardiovascular disease is major contributor to early cerebral
blood flow reduction in the disease progression of VCI. These conditions include heart disease (i.e. coronary artery disease and arrhythmias) that

impairs the ejection of blood into the blood circulation; and small and large vessel diseases (i.e. atherosclerosis and arteriosclerosis), which narrow
the vascular lumen and impede blood flow. Neuronal loss results in reduced production of angiogenesis regulators, leading to neurovascular unit

\

uncoupling. These conditions converge to cause chronic cerebral hypoperfusion that reduces delivery of glucose and oxygen to the brain
leading to decreased energy (i.e. ATP) production, resulting in bioenergetic impairment. Reduced ATP levels initiate a series of pathogenic
molecular and cellular mechanisms. Firstly, the function of ATP-dependent transporters (i.e. Na*/K* ATPase) are impaired leading to ionic
imbalance (i.e. Na* and Ca”" influx, and K" efflux) across the plasma membrane resulting in anoxic depolarization within neurons causing
excitotoxicity. Moreover, increased levels of intracellular Ca®" activate a wide variety of calcium-dependent ROS generating pathways in the
mitochondria and cytosol contributing to oxidative stress. Finally, neuroinflammation is activated as stressed or injured cells release DAMPs that
bind to PRRs to induce an inflammatory response. Under CCH, these molecular mechanisms influence each other within different cell types that
result in the following pathogenic cellular mechanisms: glial activation, BBB dysfunction, cell death and demyelination. As pathogenic cellular
mechanisms accumulate, they synergistically drive further damage eventually causing structural damage such as white matter lesions,
microinfarcts and hippocampal atrophy. Each of these structural changes cause disruption to the neuronal network and functional connectivity
that eventually leads to cognitive decline. Abbreviations: VCl, vascular cognitive impairment; ATP, adenosine triphosphate; ROS, reactive oxygen
species; DAMPs, damage-associated molecular patterns; CCH, chronic cerebral hypoperfusion; BBB, blood brain barrier

[35, 44, 45]. High levels of intracellular Ca?* activate
downstream catabolic enzymes such as endonuclease
and calpain, which degrade key cellular components
such as nuclear DNA and the extracellular matrix, re-
spectively, potentially resulting in either apoptosis and
necrosis depending on CCH severity [38, 46]. Studies
have shown the therapeutic potential of interventions
targeting excitotoxicity, including memantine, glutamate
receptor antagonist and calcium channel blockers, in
ameliorating VCI for both patients and rodent models of
VaD [47-50].

Oxidative stress

Oxidative stress occurs when the balance of reactive
oxygen species (ROS) and antioxidants disrupted and is
increasingly implicated in VaD. Upon disruption of CBF,
the mitochondrial electron transport chain is disturbed,
electron leakage occurs and reaction with oxygen pro-
duces a ROS called superoxide (O,7) [38, 51, 52]. Dis-
ruption of calcium homeostasis during CCH-induced
excitotoxicity can also trigger ROS overproduction
through depolarization of the mitochondrial membrane
and activation of downstream ROS-generating enzymes
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such as NADPH (nicotinamide adenine dinucleotide
phosphate) oxidases and xanthine oxidase [53, 54]. It
was recently suggested that a major source of ROS pro-
duction in the cytosol was activated NADPH oxidase in
VCI, with enzyme inhibition capable of ameliorating
cognitive impairment in a CCH rodent model [55].
Moreover, O,” can spontaneously undergo a series of
dismutation reactions to form other types of ROS such
as hydrogen peroxide (H,O,) and hydroxyl radical
(OH") [56, 57].

Oxidative stress can cause DNA damage and induce
oxidation of lipids and proteins that eventually results in
apoptotic death [58]. Elevated hydrogen peroxide levels
were observed in isolated mitochondria from the brain
of rodent models of VCI, with an increase proportionate
to the duration of CCH [39]. Several markers of oxida-
tive stress are elevated in VCI patients, such as lipid per-
oxidation and oxidized DNA, coupled with reduced
antioxidant levels in the plasma [59-61].

Neuroinflammation

Neuroinflammation is characterized by an increased pro-
duction of proinflammatory cytokines and chemokines
by resident brain cells such as microglia and astrocytes,
together with infiltration of peripheral immune cells into
the CNS [62, 63]. This is usually in response to patho-
gens or to a variety of pathophysiological mechanisms
such as bioenergetic imbalance, excitotoxity, mitochon-
drial dysfunction and oxidative stress causing stress or
injury to neurons, glial and vascular endothelial cells
during CCH. Consequently, danger signals such as
damage-associated molecular patterns (DAMPs) that are
released into the extracellular environment are able to
initiate local and systemic inflammation [62, 63].

The presence of chronic inflammation has been re-
ported in VCI patients during pre-clinical, clinical and
severe stages of VaD [64—67]. These studies reported el-
evated levels of classic inflammatory mediators such as
interleukin-1 beta (IL-1f), interleukin-6 (IL-6), TNFa
and C-reactive protein (CRP) that propagate inflamma-
tion, leading to degradation of the tissue matrix and in-
filtration of peripheral immune cells causing various
forms of cell death [64—67]. Studies in animal models
suggest that CCH can induce both acute and chronic
neuroinflammation that damage the myelin sheath,
blood-brain barrier (BBB) and grey matter via oligo-
dendrocyte loss, endothelial cell dysfunction, and apop-
totic and necrotic cell death of the neurovascular unit
[68-71]. Furthermore, the complement system may also
be involved in driving late stage neuroinflammatory pro-
cesses via complement factor 5a (C5a), as elimination of
C5a in a VCI mouse model exerts a protective effect
against CCH-induced injury [72].
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Pathogenic cellular mechanisms of CCH

The aforementioned molecular mechanisms initiated by
CCH are critical drivers of subsequent pathogenic cellu-
lar mechanisms in VCI such as glial activation, blood-
brain barrier dysfunction, cell death and demyelination
(Fig. 1).

Glial activation

Glial activation occurs when resident immune cells
switch from a resting state to an activated state to initi-
ate a series of changes in glial function following cellular
stress and injury in the brain. In general, microglia and
astrocytes are considered the main resident immune-
associated cell types in the brain that respond readily to
microenvironmental disturbances. CCH can trigger glial
activation through ionic imbalance, oxidative stress and
neuroinflammation [23, 73, 74] .

Several studies of brains from VCI have shown the
presence of reactive astrocytes and microglia in the areas
surrounding lesions, alongside markers of oxidative
stress and inflammation [75-77]. These activated glial
cells are likely to be involved in the pathophysiology of
V(I via several mechanisms. Firstly, they initiate and fa-
cilitate neuroinflammation, leading to cellular injury and
leukocyte infiltration into the brain [78, 79]. Secondly,
inflammation suppresses the pro-survival action of endo-
thelial cells on neurons by reducing neurotrophic signal-
ing leading to endothelial cell atrophy and microvascular
rarefaction [80, 81]. Thirdly, activated microglia release
proinflammatory cytokines and chemokines that disrupt
BBB integrity by redistributing tight junction proteins
and reorganizing the actin cytoskeleton in microvascular
endothelial cells in the brain [82, 83]. Finally, glial activa-
tion contributes to demyelination by impeding remyeli-
nation, as reactive astrocytes and microglia surrounding
the white matter lesion release IL-1p and hyaluronan to
inhibit maturation of oligodendrocytes during CCH [69,
84].

Blood-Brain barrier dysfunction and breakdown

Blood-brain barrier (BBB) dysfunction is when the integ-
rity of the highly selective semipermeable border sur-
rounding the brain parenchyma is compromised. BBB
function involves coordinated interactions between
endothelial cells and pericytes regulating the selective
diffusion of substances into the brain parenchyma. In
particular, it is regulated by tight junction proteins
(TJPs) located between endothelial cells, with the sup-
port of pericytes attached [85, 86]. Disruption of TJP ar-
rangement or distribution loosens the interaction
between adjacent endothelial cells, compromising the
physical barrier and increasing its permeability to foreign
substances [87, 88]. CCH-induced oxidative stress and
inflammation contribute significantly to BBB dysfunction
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by reducing the density of TJPs on the endothelial mem-
brane [89-91]. Inflammation can also upregulate cell ad-
hesion molecules (i.e. Intercellular Adhesion Molecule
(ICAM) and Vascular Cell Adhesion Molecule (VCAM)
to facilitate the infiltration of peripheral immune cells
across the BBB to release additional ROS and proinflam-
matory cytokines [90, 92, 93]. Finally, proinflammatory
cytokines can upregulate gene expression of matrix me-
talloproteinases, MMP2 and MMP9, that can also de-
grade the extracellular matrix contributing to BBB
dysfunction [94, 95].

Dysfunction of the BBB is increasingly implicated in
VCI [96, 97]. In multiple mouse models of CCH, impair-
ment of the BBB is observed through increased vascular
permeability of intravascular Evans blue dye and horse-
radish peroxidase (HRP) into the brain parenchyma [91,
98, 99]. Several studies have also shown that CCH re-
duced pericyte coverage on capillaries, contributing to
BBB dysfunction via endothelial transcytosis [91, 100,
101]. Moreover, the cerebrospinal fluid/plasma albumin
ratio, another indicator of BBB damage, has also been
reported to be elevated in VCI patients relative to
healthy controls, with the severity of BBB damage corre-
sponding to white matter lesions [102]. While the nature
and extent of BBB disruption in the pathogenesis of VCI
remains to be fully elucidated, it is currently thought to
be mediated by oxidative stress and neuroinflammation
[103, 104].

Cell death: necrosis and apoptosis

The aforementioned pathogenic molecular mechanisms
caused by CCH, including bioenergetic imbalance, exci-
totoxicity, oxidative stress and inflammation, can disrupt
the integrity of the neurovascular unit leading to pro-
grammed neuronal and glial death [38, 58, 105]. In par-
ticular, accumulation of Ca** in the cytosol from
excitotoxicity can activate catabolic enzymes that cleave
DNA and hydrolyze cellular cytoskeletal proteins to
cause apoptosis [46, 106, 107]. Similarly, CCH-induced
oxidative stress and neuroinflammation can also activate
cell death pathways. For example, HO, can trigger ne-
crosis and apoptosis via the modulation of activator
protein-1 (AP-1) and B-cell lymphoma-2 (Bcl-2) family
proteins, respectively [108, 109]. The proinflammatory
cytokine, TNF-q, is a critical ligand for death receptors
that can activate pro-apoptotic caspase-8 and -3 in the
extrinsic apoptotic pathway during CCH [110].

Necrosis and apoptosis are two types of cell death that
have been established to occur clinically in VCI. In VCI,
necrotic cell death can be observed within lacunar in-
farcts formed when the brain tissue is exposed to total
or partial reduction of blood flow [111, 112]. Apoptosis
is a highly conserved cell death pathway involving the
family of cysteine-dependent aspartate specific proteases
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(Caspases), which induces DNA fragmentation and
phagocytic signaling [113, 114]. Apoptosis has also been
observed in cerebral autosomal dominant arteriopathy
with CADASIL patients and various mouse models of
VCI [115-117]. In addition to necrosis and apoptosis,
recent studies have demonstrated inflammasome medi-
ated necroptotic and pyroptotic forms of cell death dur-
ing CCH, suggesting its potential involvement in VCI
[66, 71, 118, 119].

Demyelination
Demyelination refers to a condition where the protective
myelin sheath that surrounds neuronal axons is damaged
and degraded. It is commonly observed within the deep
white matter in patients with small vessel disease, lead-
ing to cognitive decline in the aged brain [120, 121].
CCH can result in demyelination induced by a
hypoxic-ischemic environment and inflammation [121,
122]. Hypoxic conditions trigger the activation of the
hypoxia-inducible factor-1 (HIF-1) regulatory pathway
leading to inflammation and apoptotic cell death [76,
123]. Inflammation activates glial cells to release inflam-
matory mediators such as TNF-a, matrix metallopro-
teinases (MMPs) and serine proteases that damage the
myelin sheath [77, 124, 125]. Active proteases (i.e.
MMP-1, MMP-2, MMP-3, MMP-7, MMP-9 and Cal-
pain) induced by CBF disruption degrade myelin basic
protein (MPB), and disrupt the polymeric network
within the myelin sheath [95, 124, 126]. Moreover,
CCH-induced inflammation can initiate activation of
apoptosis and pyroptosis in oligodendrocytes, that may
attenuate myelin synthesis and repair, and exacerbate
demyelination [71].

Pathological Structural features and cognitive impairment
from CCH

Several structural pathological features are observed in
the brain during VCI. Advances in neuroimaging have
allowed detection of white matter lesions, lacunes,
microinfarcts, microbleeds and enlarged periventricular
spaces, which are now considered standard diagnostic
features of VCI [15, 127, 128]. In this section, several
key pathogenic structural damages and cognitive impair-
ment associated with CCH will be discussed (Fig. 1).

White matter Lesions

White matter lesions (WMLs) are regions in the brain
parenchyma with demyelination in the white matter that
appear as hyperintensities (without cavitation) on T2-
weighted MRI images [128]. WMLs are primarily formed
from axonal demyelination that is usually produced from
the loss of oligodendrocytes [129, 130], and accompan-
ied by both glial activation [131, 132] and loss of axon-
glial integrity [133]. These features are a reflection of the
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underlying mechanisms of CCH-induced WML forma-
tion. As discussed above, CCH triggers molecular mech-
anisms that contribute to glial activation, cell death and
demyelination. As cerebral hypoperfusion persists, these
injuries accumulate at the cellular level, especially in oli-
godendrocytes within the white matter region and sur-
rounding glial cells.

WMLs are a significant contributor to cognitive de-
cline and are a prominent feature of VCI [134-136].
WMLs disrupt the functional connections between the
cortical and subcortical regions, affecting cognitive func-
tion and emotions [137, 138]. WMLs also reflect loss of
cholinergic neurons, compromising the neurotransmitter
system, eventually leading to cognitive decline in VCI
patients [134, 139]. The main mechanisms underlying
the formation of WMLs in humans are critical stenosis
and hypoperfusion of medullary arterioles in small vessel
disease (i.e. arteriolosclerosis) and hypotensive episodes
[140-142]. White matter regions with lower CBF devel-
oped into WMLs in a longitudinal study [143]. The posi-
tive association between CCH and a decline in cognitive
function is particularly profound in patients with severe
WMLs [28]. In mouse models, CCH resulted in similar
white matter rarefaction and lesion formation together
with cognitive impairment, further emphasizing the
common role of WMLs in VCI [71].

Microinfarcts
Microinfarcts are small fluid-filled spaces/lesions that
appear in large numbers within the cortical and subcor-
tical brain regions. The formation of microinfarcts is
usually caused by the activation of necrotic and pro-
grammed cell death pathways in neurons and glial cells,
and commonly associated with neuronal loss, gliosis and
axonal damage [144-146]. This process is often accom-
panied by the migration of glial and peripheral immune
cells, such as macrophages, to the necrotic site of injury.
Immune cells phagocytose damaged cells, and astrocytes
proliferate and undergo gliosis to form a barrier around
the lesion to limit the spread of necrosis [145-147].
Microinfarcts are more prominent in VCI than in
other demented patients [148]. In VCI, microinfarcts are
associated with cerebral amyloid angiopathy and reduced
cerebral perfusion [22, 120]. Several post-mortem stud-
ies have demonstrated that hypoperfusion initiates and
promotes the progression of microinfarct formation in
brain areas vulnerable to hypoperfusion (i.e. watershed
cortical region) [149, 150]. Microinfarcts affect the brain
structural network, leading to impaired performance in
various cognitive domains [151, 152]. Microinfarcts also
cause primary disruption to local tissue function, sec-
ondary inflammation and axonal disorganization to the
white matter tracts, further exacerbating damage to
brain circuits and function [153-155].
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Hippocampal atrophy

Hippocampal atrophy refers to the loss of neurons and
neuronal volume in the hippocampus. It is a classic
marker for AD, but can also be observed in VCI pa-
tients. The degree of atrophy has been estimated to be
16.6% in AD and 11.6% in VCI [156-158]. The hippo-
campus is a complex brain region that is highly sensitive
and vulnerable to insults caused by reduced cerebral
perfusion or hypoxia, which stimulate a number of
pathogenic mechanisms such as excitotoxicity, oxidative
stress, and inflammation to activate cell death pathways
[159, 160], leading to hippocampal atrophy. Animal
studies have shown that with CCH, the hippocampus
displays acute neuronal damage and cell death originat-
ing from the CA4 area, to CA2 and CA3, with the CAl
area being the last zone affected [71, 161, 162]. Decline
in memory performance, spatial navigation and visuo-
spatial functions have been observed in patients with
hippocampal atrophy [163, 164]. While the direct mech-
anistic explanation for these associations in VCI has not
been established, it is suggested that reduced neuronal
capacity in the hippocampal area lowers its connectivity
with other brain regions [163—165]. Decreased levels of
the synaptic protein synaptophysin has been reported in
VCI patients compared to healthy subjects, suggesting a
potential deficit in synaptic transmission upon hippo-
campal atrophy [144, 166] .

Cognitive dysfunction in VCI
VCI encompasses a broad spectrum of cognitive dys-
functions ranging from subjective cognitive impairment,
mild cognitive impairment to dementia (VaD) [8, 13].
The underlying pathophysiological mechanisms respon-
sible for CCH-induced cognitive impairment may be ex-
tensive and severe. CCH initiates several cellular
mechanisms - glial activation, BBB dysfunction, cell
death and demyelination, via the activation of numerous
pathogenic molecular mechanisms, including bioener-
getic impairment and ionic imbalance, excitotoxicity,
oxidative stress and neuroinflammation in different types
of brain cells. These mechanisms all contribute to struc-
tural damage such as WMLs, microinfarcts and hippo-
campal atrophy. The influence of these structural
damages on cognitive function was discussed previously.
Several guidelines have proposed that VCI is a syn-
drome with evidence of either clinical stroke or subclin-
ical vascular brain injury, and cognitive impairment
affecting at least one cognitive domain [8, 15, 167]. The
cognitive domains involved in diagnosing VCI are execu-
tive/attention, memory, language, and visuospatial func-
tion [8]. Executive dysfunction is a well characterized
neurological feature of VaD and can be present in VCI
patients who are not demented [168, 169]. Impairments
to executive functions are heavily associated with lesions
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and damage within the frontal lobes or downstream
frontal-subcortical circuits of VCI/VaD patients [170,
171]. Memory impairment is a key feature of AD and is
also important in VaD. Studies have shown that VaD pa-
tients experienced greater impairment in semantic mem-
ory than AD patients, possibly due to the inability to
retrieve information from short and long-term memory
[172-174]. Impairments in language and visuospatial
functions can also be observed in VCI. When presented
with a picture description task, VaD patients exhibit
lower semantic content production while maintaining a
fluency comparable to healthy patients [175]. VaD pa-
tients show impairments in most of the tests associated
with visuospatial tasks, indicating a deficit in construc-
tional and visuoperceptual ability [174, 176].

Inflammation - a critical molecular mechanism
and a bridge between CCH and various cellular
mechanisms

Several key events have been identified in the patho-
physiology of VCI, as briefly summarized above. How-
ever, whether these events are causative or merely
consequential to the progression of VCI has yet to be
conclusively validated. A comprehensive understanding
on the pathogenesis of VCI will not only pave the way
for development of interventions, but allow us to target
VCI with maximum efficacy [8]. In addition, interven-
tions targeting an early temporal event in the pathogen-
esis of VCI would better attenuate other repercussions
elicited by the many late temporal events in the patho-
genesis of VCI. Hence, there is an increasing focus on
exploring the temporal profile of events in the pathogen-
esis of VCI. The current notion regarding VCI remains
that the underlying root cause is the initial disruption to
CBF, with a cascade of events leading to cognitive im-
pairments [20-22, 26, 177]. Specifically, several lines of
evidence have highlighted a plausible causative role of
neuroinflammation as an early temporal event that then
influences other mechanisms in contributing to the
pathogenesis of VCI [64—67, 77].

Neuroinflammation has been implicated in dementia,
and is associated with a decline in cognitive functions
and functional connectivity in demented patients [178,
179]. Elevated levels of inflammatory markers, including
the highly sensitive CRP and IL-6, IL-8 and IL-1f, were
found in brain tissues and peripheral samples of demen-
ted patients [65, 66, 180—182]. Some of them (e.g. IL-6
and CRP) were even associated with an increased risk of
dementia, including VaD [181, 182]. However, a few
studies demonstrated lower levels of inflammatory medi-
ators in patients with dementia. For example, Chen et al.
and Mulugeta et al. showed that normal controls had
significantly higher levels of IL-6 and IL-8 in different
parts of the brain when compared to AD, mixed
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dementia or VaD patients [183, 184]. It was also ob-
served that IL-6 and IL-8 levels were lower in the cere-
brospinal fluid and plasma of patients with AD [185,
186]. While the results are controversial, it is essential to
consider the following points. Firstly, the profile of cyto-
kines may depend on the stage and progression of the
disease [187, 188]. Secondly, some of these inflammatory
cytokines, such as IL-6 and TNF-a, may exhibit pleio-
tropic actions with known pro- or anti-inflammatory ef-
fects [187, 188], which adds more complexity to the
interpretation of these studies. Lastly, heterogeneity of
post-mortem samples and difficult application of the de-
tection methods for proinflammatory mediators in the
brain and peripheral samples may account for the
contradictory conclusions of some studies [189-191].
Despite these variable results, inflammation is still con-
sidered one of the critical underlying mechanisms of de-
mentia. More importantly, the levels of these
proinflammatory mediators were shown to be elevated
even before the clinical onset of VaD [67] suggesting
that neuroinflammation may be involved in both early
and late stages of VCI disease progression.

The associations between neuroinflammation and im-
pairments in cognitive function may stem from its in-
volvement in several key events in the pathogenesis of
V(I, such as glial activation, BBB dysfunction, cell death,
demyelination and WML formation. The influence of
neuroinflammation on these events through the action
of the inflammasome signaling pathway will be discussed
in the following section.

Inflammasome signaling pathway: linking IL-1 to
\'[q]

Among the numerous inflammatory mediators impli-
cated in VCI, one group of proinflammatory cytokines
is prominent: the interleukin-1 (IL-1) family. Amongst
the IL-1 family members, both IL-1f and IL-18 are
increasingly implicated in the progression of VCI. Ele-
vated levels of both IL-1B and IL-18 have been re-
ported in the serum of VaD patients [64, 65, 192].
While there could be an involvement of systemic in-
flammation in the studies of serum samples, post-
mortem studies of different brain tissues showed that
the level of IL-1B was higher in the frontal cortex
and hippocampus of VaD patients in comparison to
controls [66, 193] indicating that IL-13 may be
strongly involved in the process of neuroinflammation
during VCI. The production and maturation of both
IL-1B and IL-18 is primarily driven from a major arm
of the innate immune system termed the inflamma-
some signaling pathway [194]. As such, this pathway
is likely to serve as a critical point in regulating pro-
duction of IL-1 family cytokines during the pathogen-
esis of VCIL
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Overview of the Inflammasome signaling pathway
Inflammasomes are macromolecular protein complexes
that are essential signaling platforms capable of detecting
pathogenic signals via pathogen-associated molecular
patterns (PAMPs) and endogenous sterile stressors via
damage-associated molecular patterns (DAMPs) [38].
Upon detection of PAMPs or DAMPs, the inflamma-
some complex is activated to trigger downstream inflam-
matory cascades such as the production of inflammatory
cytokines. Given its sterile nature, neuroinflammation in
VCI can be considered exclusively driven by DAMPs.
The two main characterized inflammasome signaling
pathways are the canonical and non-canonical pathways,
each of which involves two steps to achieve inflamma-
some signaling: priming and activation [38, 195, 196].

The canonical inflammasome signaling pathway typic-
ally leads to the activation of caspase-1 and -8 (Fig. 2).
The priming step (i.e. Signal 1) is initiated by the pres-
ence of DAMPs (e.g. HMGBI, IL-1a), which can activate
various extracellular PRRs including toll-like receptors
(TLR; TLR2, TLR4), receptor for advanced glycation
end-products (RAGE) and interleukin-1 receptor 1 (IL-
1R1) [195, 197], leading to downstream activation of
NF-kB, MAPK, p53 and JAK-STAT pathways [38, 195,
198]. The main purpose of priming is to increase gene
expression of key inflammasome components (i.e. recep-
tor/sensor, adaptor and effector) and precursors of IL-13
and IL-18 in the cytosol [199, 200]. Priming can be inde-
pendent of transcriptional expression whereby post-
translational modifications (i.e. phosphorylation and de-
ubiquitination) are essential to “license” inflammasome
activation [201]. The activation step (i.e. Signal 2) in-
volves stimulation of cytosolic inflammasome receptors/
sensors that can be triggered by various DAMPs and/or
disturbances in the cellular microenvironment, resulting
in assembly and activation of the canonical inflamma-
some complex to facilitate activation of effectors
caspase-1 and -8 [194, 202]. The NLRP3 complex is ar-
guably the best characterized inflammasome, and along
with the NLRP1, NLRC4 and AIM2 inflammasome com-
plexes facilitates the self-cleavage of total caspase-1 and
-8 into biologically active cleaved caspase-1 and -8, re-
spectively [194, 195, 203, 204]. Both cleaved caspase-1
and -8 can cleave precursors of both IL-1p and IL-18
into mature proinflammatory cytokines that can then
amplify downstream inflammation [205, 206]. Cleaved
caspase-1 and -8 are also implicated in the activation of
programmed cell death pathways such apoptosis and
pyroptosis [207-209], and will be discussed below.

The non-canonical inflammasome signaling pathway
leads to the activation of the mouse homolog caspase-
11, with the corresponding human homologs being
caspase-4 and -5 (Fig. 2). It shares some similarities to
the canonical activation of caspase-1, although the non-
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canonical pathway possesses some unique characteris-
tics. Transcriptional priming is also present for caspase-
11 in the non-canonical inflammasome signaling path-
way, mediated by extracellular PRRs, including Toll-Like
Receptors (TLRs) (i.e. TLR2, TLR4), RAGE and IL-1R1
[195, 197]. Total caspase-11 can detect cytosolic lipo-
polysaccharides (LPS) from gram-negative bacteria, and
oligomerize to form a macromolecular complex of full
length caspase-11 components. Subsequently, full length
caspase-11 undergoes autoproteolytic cleavage via
proximity-induced activation and conversion to its active
cleaved form. Cleaved caspase-11 can induce pyroptosis
and also indirect maturation of IL-1p and IL-18, in a
caspase-1-dependent manner via induction of K* efflux
[210, 211]. Low intracellular K" levels can activate
NLRP1 and NLRP3 inflammasomes, thereby linking the
non-canonical pathway to the canonical inflammasome
pathway [212, 213]. Caspase-11 can also be activated by
a class of DAMPs known as oxidized 1-palmitoyl-2-ara-
chidonyl-sn-glycero-3-phosphorylcholine (0xPAPC), al-
though o0oxPAPC upregulates the production and
secretion of IL-1f, but does not induce pyroptosis [214].

Molecular structure of Inflammasome components
A canonical inflammasome complex is typically com-
prised of three distinct components: a receptor/sensor,
an adapter and effector (Fig. 3). The sensor is usually a
cytosolic PRR that detects perturbations in the intracel-
lular microenvironment that serve as the activation sig-
nal to initiate inflammasome assembly. The
inflammasome complexes are named after their respect-
ive intracellular PRR, which are from two major families:
the nucleotide-binding oligomerization domain-like re-
ceptor (NLR) family and the pyrin and hematopoietic
expression, interferon-inducible, nuclear localization
(HIN) domain-containing (PYHIN) family [38, 194].
Members of the NLR family share similar structural do-
mains such as the NLR apoptosis inhibitory protein
(NAIP), MHC class II transcription activator (CIITA),
incompatibility locus protein from Podospora anserina
(HET-E), and telomerase-associated protein (TP1), col-
lectively known as NACHT, and a leucine-rich repeat
(LRR) [215, 216]. The NACHT domain is responsible
for NLR oligomerization, while LRR is the inhibitory
unit folded onto the NACHT domain, keeping the re-
ceptor in its inactive state. The two other critical do-
mains are the Pyrin (PYD) domain and the caspase
activation and recruitment domain (CARD), which inter-
act with other components with similar domains to form
the inflammasome complex [38, 194, 217, 218]. Molecu-
lar structures of the AIM2, NLRP1, NLRP3, and NAIP-
NLRC4 receptor complexes are discussed below (Fig. 3).
The NLR-pyrin domain containing 1 (NLRP1) belongs
to the NLR family of PRRs, with only a single variant of
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Fig. 2 A schematic diagram illustrating the canonical and non-canonical inflammasome signaling pathways in the brain during chronic cerebral
hypoperfusion. In the canonical inflammasome pathway, two signals — priming and activation are involved. The first signal is the priming step
whereby endogenous extracellular ligands (DAMPs) are able to bind onto its respective pattern recognition receptors (ie. TLR, RAGE, IFN-yR, IL-1R)
on neighbouring cells, activating several downstream regulatory pathways (i.e. NF-kB, MAPK, P53 and JAK-STAT), leading to increased gene
expression of inflammasome components (i.e. receptors, adaptor and effector proteins) and both precursor IL-13 and IL-18 in the cytosol.
Following priming, a second signal is required to activate the inflammasome receptor(s) to form a macromolecular platform that recruits the
adaptor protein (ie. ASC) and effector proteins (i.e. total caspase-1 and -8) to form a multi-protein complex termed an inflammasome. In the
inflammasome complex, total caspase-1 and -8 undergo proximity-induced activation to form active cleaved caspase-1 and -8 that initiates
several catalytic functions. First, cleaved caspase-1 and -8 induces mature cytokine production by cleaving precursors IL-13 and IL-18 into active
mature IL-13 and IL-18 proinflammatory cytokines. Second, cleaved caspase-1 and -8 are able to initiate an inflammatory form of cell death by
cleaving GSDMD-FL into GSDMD-NT. As more GSDMD-NTs are produced in the cytosol, these fragments self-oligomerize onto the plasma
membrane to form a pore to facilitate the influx of water molecules to induce a Iytic form of cell death known as pyroptosis. Third, cleaved
caspase-1 and -8 can trigger apoptosis by cleaving total caspase-3 into active cleaved caspase-3. Moreover, active cleaved caspase-3 can also
initiate another form of cell death known as secondary necrosis by cleaving GSDME-FL into GSDME-NT. Similar to GSDMD-NT, GSDME-NT can
self-oligomerize to form pores on the plasma membrane; in addition to forming pores on the mitochondrial membrane, which results in
cytochrome c release, further exacerbating apoptosis. In the non-canonical inflammasome pathway, total caspase-11 can be activated by binding
to an endogenous ligand (i.e. OxPAPC) that allows oligomerization of total caspase-11. Such oligomerization initiates the proximity-induced
activation of total caspase-11 to form active cleaved caspase-11. The non-canonical effector protein, cleaved caspase-11, can also directly cleave
GSDMD-FL into GSDMD-NT to cause pore formation. It has been shown that K* efflux resulting from pore formation can serve as an activation
signal for canonical NLRP3 receptor activation, indicating cross-talk between the canonical and non-canonical inflammasome signalling pathways.
Abbreviations: DAMPs, damage associated molecular patterns; HMGB1, high mobility group box protein 1; IL, interleukin; IFN, interferon; TLR, toll-
like receptor; RAGE, receptor for advanced glycation end products; NF-kB, nuclear factor kappa-light-chain enhancer of activated B cells; MAPK,

GSDME, gasdermin E

mitogen activated protein kinase; JAK/STAT, janus kinase-signal transducer and activator of transcription; Pre, precursor; GSDMD, gasdermin D;

NLRP1 found in humans [194, 219]. The NLRP1 recep-
tor consists of an N-terminal PYD, NACHT, LRR,
function-to-find domain (FIIND) and a C-terminal
CARD domain. The FIIND domain is unique to NLRP1
in the NLR family, and may play an autoinhibitory role
[219, 220] (Fig. 3). The NLR-pyrin domain containing 3
(NLRP3) belongs to the NLR family of PRRs and is per-
haps the most studied of all inflammasomes. The NLRP3
receptor consists of an N-terminal PYD, NACHT and
LRR domain [194, 221] (Fig. 3). The NLR apoptosis in-
hibitory protein (NAIP) and the NLR-CARD containing

4 (NLRC4) belong to the NLR family as they both con-
tain NACHT and LRR domains. NAIP is distinct from
other NLR proteins as they contain three baculovirus
inhibitor-of-apoptosis repeats (BIR) at the N-terminal
domain. Unlike the previously mentioned PRRs of the
NLR family, NLRC4 contains an N-terminal CARD ra-
ther than a PYD domain, in addition to the NACHT and
LRR domains [194, 222] (Fig. 3). The absent in melan-
oma 2 (AIM2) belongs to the PYHIN family of PRRs,
and together with four other members forms the AIM2-
like receptor (ALR) family of inflammasomes. AIM2 is a
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Fig. 3 A schematic diagram illustrating the molecular structure of
inflammasome receptor, adaptor and effector components.
Members of the NLR family share similar structures: the NACHT
domain is responsible for NLR oligomerization, while LRR is the
inhibitory unit of the NACHT domain, keeping the receptor in its
inactive state. The two other critical domains are the PYD domain
and the caspase activation and recruitment domain (CARD) to
facilitate interactions with other inflammasome components with
similar domains to form the NLRP1, NLRP3 and NLRC4
inflammasome complex. Under the PYHIN family, the AIM2
inflammasome receptor has a PYD domain for adaptor binding and
a HIN200 domain for dsDNA ligand binding. The adaptor protein
ASC has both the PYD and CARD domain, serving as a linker protein
between the inflammasome receptor and effector protein
components. The three effector protein components share similar
catalytic units (i.e. large and small units) and an N-terminal domain
(i.e. CARD or DED) for inflammasome complex binding.
Abbreviations: NLR, nucleotide-binding oligomerization domain-like
receptor; NACHT, NAIP (neuronal apoptosis inhibitor protein) C2TA
(class 2 transcription activator, of the MHC) HET-E (heterokaryon
incompatibility) and TP1 (telomerase-associated protein 1); LRR,
leucine-rich repeat; PYD, pyrin domain; CARD, caspase recruitment
domain; NLRP1, NLR family pyrin domain containing 1; NLRP3, NLR
family pyrin domain containing 3; NLRC4, NLR family CARD domain-
containing protein 4; AIM2, absent in melanoma 2; HIN200,
hematopoietic interferon-inducible nuclear proteins with a 200-
amino-acid repeat; dsDNA, double-stranded DNA; ASC, apoptosis-
associated speck-like protein containing a CARD; DED, death
effector domain

bipartite protein, consisting of an N-terminal PYD and a
200-amino-acid HIN domain with two oligonucleotide/
oligosaccharide-binding folds [218, 223]. The HIN do-
main can bind to double-stranded DNA (dsDNA)
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independent of its sequence, and during the absence of
ligand binding can interact in an intramolecular manner
with the PYD to result in autoinhibition [218] (Fig. 3).

The adapter, known as apoptosis-associated speck-like
protein containing a CARD (ASC), is a protein respon-
sible for the interactions between various inflammasome
components, such as a scaffold protein that connects the
PRR to the effector components. ASC contains both an
N-terminal PYD domain and a C-terminal CARD do-
main [217, 224] (Fig. 3).

The effector protein components are a group of in-
flammatory caspases that catalyze a broad spectrum of
substrates upon activation. Caspase-1, — 8 and — 11 play
a significant role as the effectors in the inflammasome
signaling pathway. Both caspase-1 and -11 contain an N-
terminal CARD domain and C-terminal catalytic domain
(composed of large p20 and small pl0 subunits).
Caspase-8 contains two death effector domains (DED) at
its N-terminal and the catalytic domain at the C-
terminal [225, 226]. Although these caspases are similar
in structure, they differ in their domain linkers and resi-
dues in their catalytic pocket, contributing to their dif-
ferential role in the inflammasome signaling pathway
[227-229] (Fig. 3).

Possible Inflammasome-inducing stimuli in VCI

During the pathogenesis of VCI, a multitude of stress
signals and DAMPs are produced in the cytosol, released
and detected by various PRRs, resulting in their eventual
activation and formation of inflammasome complexes
[194, 200]. This section discusses stimuli that potentially
activate the NLRP1, NLRP3, NAIP-NLRC4 and AIM2
inflammasome receptors during CCH (Fig. 4).

The exact function of NLRP1 in innate immunity is
not yet fully elucidated, but it is believed to be activated
via autolytic proteolysis within the FIIND domain in re-
sponse to severe bacterial infections [220]. NLRP1 levels
are upregulated in ischemic conditions, and although the
responsible activation signals are unclear, they are likely
to be from aberrations in the cellular microenvironment
such as depletion of intracellular ATP and reduction of
intracellular K* levels arising from K" efflux during bio-
energetic impairment [38, 212, 230]. The NLRP3 recep-
tor can be activated by a multitude of intracellular
signals including decreased K*, increased Ca** and oxi-
dative stress during CCH [212, 231, 232]. Given that
NLRP3 can respond to a diverse range of signals, it is
likely to be responding to a common cellular event
caused by these activators rather than directly to the ac-
tivators themselves. Moreover, increased levels of hyalur-
onic acid was observed in the cerebrospinal fluid of VaD
patients that appeared to serve as a potential NLRP3
stimuli [233].
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Fig. 4 A schematic diagram illustrating potential stimuli involved in inflammasome receptor activation during CCH. The precise molecular and
cellular mechanisms of inflammasome receptor activation during CCH are unknown. However, relevant studies suggest several plausible
mechanisms including - decreased intracellular K* concentration, increased intracellular Ca’* concentration, ROS production, DNA fragmentation
and oxidized mitochondrial DNA. During CCH, lower cerebral blood flow reduces ATP production, and impairs ATP-dependent transporters such
as the Na*/K*-ATPase pump, leading to K" accumulation in the extracellular space. Alternatively, ATP released by damaged cells can bind to the
P2X4 and P2X7 receptors on neighbouring cells, leading to the receptor opening and efflux of K*. In addition, damaged cells can also passively
release K* into the extracellular environment. Extracellular K* can activate Pannexin-1 channels on the plasma membrane through a mechanism
independent of the membrane potential. This further promotes the release of ATP into the extracellular space, creating a positive feedback loop
for K" efflux. Consequently, the accumulation of extracellular K" and decrease in intracellular K* levels can activate the NLRP3 receptor by
inducing a conformational change that promotes oligomerization. During CCH, severely damaged necrotic cells may also release Ca’* into the
extracellular space, activating calcium-sensing receptors (CaSRs) on neighbouring cells. Activated CaSRs inhibit the activity of adenylate cyclase,
reducing the conversion of ATP to cAMP. As cAMP is an inhibitor for NLRP3, a reduction in cAMP levels in the cytosol can promote NLRP3
inflammasome activity. Ca”* can also promote inflammasome activation through the TRPM2 Ca?* channel during CCH. As Ca** enters the cell via
the TRPM2 channel, it enables protein kinase R (PKR) in the cytoplasm to phosphorylate NLRP1 and NLRP3 receptors resulting in inflammasome
activation. CCH also caused a substantial degree of oxidative stress and the production of ROS in the cell. ROS can interact with the TXNIP-TRX
complex to release TXNIP from TRX, allowing it to bind to the NLRP3 receptor for subsequent inflammasome activation. CCH induces AIM2
inflammasome activation via the production and release of fragmented dsDNA. Severely damaged cells and mitochondria are the source of
fragmented dsDNA during CCH. While intracellular mitochondrial dsDNA interacts directly with the AIM2 receptor in the cytosol, extracellular
dsDNA enters the cell via the facilitation of RAGE. When RAGE detects the presence of dsDNA in extracellular space, it promotes endosomal DNA
uptake of the cell. The dsDNA will then bind onto the HIN-domain of the AIM2 receptor, releasing the receptor from its autoinhibitory state. This
allows the AIM2 receptor to oligomerize and initiate inflammasome activation. Abbreviations: CCH, chronic cerebral hypoperfusion; ROS, reactive
oxygen species; ATP, adenosine triphosphate; P2X4, P2X purinoceptor 4; P2X7, P2X purinoceptor 7; NLR, nucleotide-binding oligomerization
domain-like receptor; NLRP1, NLR family pyrin domain containing 1; NLRP3, NLR family pyrin domain containing 3; cAMP, cyclic adenosine
monophosphate; TRPM2, transient receptor potential melastatin 2; TXNIP, thioredoxin-interacting protein; TRX, thioredoxin; AIM2, absent in
melanoma 2; HIN200, hematopoietic interferon-inducible nuclear proteins; dsDNA, double-stranded DNA; RAGE, receptor for advanced
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While no study to date has directly investigated the ef-
fect of CCH to cause bioenergetic deficits, blood flow re-
duction during ischemia is known to induce K* efflux
[46, 234]. This is a possible mechanism by which CCH
activates the NLRP inflammasome receptors. Lower
cerebral blood flow reduces ATP production and impairs
ATP-dependent transporters such as the Na'/K'-

ATPase pump leading to K™ accumulation in the extra-
cellular space during ischemia [46, 234]. Alternatively,
ATP released by damaged cells can bind to the P2X pur-
inoceptor 4 (P2X4) and P2X purinoceptor 7 (P2X7) on
neighboring cells, leading to opening of the ligand-gated
ion channel and K" efflux. In addition, K" can be pas-
sively released into the extracellular environment due to
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increased permeability of the plasma membrane from
damaged cells [38, 235]. Elevated levels of extracellular
K" can activate Pannexin-1 channels on the plasma
membrane through a mechanism independent of the
membrane potential, to further promote release of ATP,
creating a positive feedback loop for K* efflux [38, 236,
237]. K" efflux has been identified as a key step for
NLRP1 and NLRP3 inflammasome activation, although
there is no clear understanding of the precise mechan-
ism linking K* efflux and NLRP receptor activation [232,
238]. However, a recent study showed that low intracel-
lular K* concentrations can open the inactive structure
of NLRP3 by altering a domain in between the PYD and
NACHT domains, resulting in a stable structure that
promotes the functional oligomerization of NLRP3 into
active oligomers [239] (Fig. 4).

Other than K" efflux, a reduced intracellular cyclic ad-
enosine monophosphate (cAMP) concentration during
CCH may activate the NLRP3 inflammasome [235, 240].
Binding of cAMP to the NLRP3 receptor inhibits its
ability for inflammasome assembly. When cAMP is re-
duced upon CCH, NLRP3 activation is promoted [231,
235, 240]. While the underlying cause of cAMP reduc-
tion is unknown, evidence from mechanistic studies
from ischemic models suggest an involvement of Ca**.
When Ca®* is released by damaged cells, it activates G-
protein coupled calcium-sensing receptors (CaSRs) on
the plasma membrane, allowing it to interact with Gai
and inhibit adenylate cyclase, reducing the conversion of
ATP to cAMP in neighboring cells [38, 231, 235]. The
involvement of Ca®* in mediating NLRP3 inflammasome
activation is highly plausible as the Ca**-permeable
channel, transient receptor potential melastatin 2
(TRPM2), plays a significant role in regulating the pro-
duction of IL-1f upon CCH [70]. One possible explan-
ation for this is that it allows influx of Ca**, which
activates protein kinase R (PKR) in the cytoplasm. Upon
activation, PKR can phosphorylate NLRP1 or NLRP3 re-
ceptors for inflammasome activation, leading to produc-
tion of IL-1p [38, 241, 242] (Fig. 4).

Numerous lines of evidence have shown that NLRP3
inflammasome activation is closely linked to increased
levels of ROS in neurological diseases [243, 244]. Several
studies have already demonstrated a close association
between ROS, thioredoxin-interacting protein (TXNIP)
and NLRP3 [243-245]. The generation of ROS facilitates
the uncoupling of TXNIP from thioredoxin (TRX),
allowing TXNIP to bind to the NLRP3 receptor for
inflammasome activation [244-246]. Due to increased
oxidative stress observed in CCH mouse models of VCI
[39, 55, 247], one study demonstrated that decreased
TXNIP-associated oxidative stress was associated with
reduced NLRP3 and IL-1p expression, in conjunction
with better cognitive performance [248]. Another major
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source of ROS is from the mitochondria as increased
hydrogen peroxide production induced oxidative stress
that were observed in rodent models of CCH [39] (Fig.
4).

NAIP-NLRC4 is generally activated by pathogenic bac-
teria, with NAIP as a direct receptor to these bacterial
signals [249] However, activation of NAIP-NLRC4 has
been shown to be associated with lysophosphatidylcho-
line (LPC), which are lipids arising from the hydrolytic
activity of phospholipase A2 (PLA;) under stressed con-
ditions [250, 251]. Although LPC has been found to acti-
vate NLRC4 and NLRP3 inflammasomes in
neuroinflammatory disease mouse models [250, 252], it
is unlikely to be involved in VCI as the levels of LPC do
not differ significantly upon CCH [253]. Nucleotide-
derived metabolites, including adenine and N4-
acetylcytidine (N4A), can both prime and activate the
NAIP-NLRC4 inflammasome [254], and could be rele-
vant given that oxidative DNA damage has been de-
scribed in VCI patients [60]. However, no evidence to
date have investigated the effect of CCH on nucleotide-
derived metabolites.

AIM2 is activated by the binding of dsDNA to the
HIN domain, thereby removing the autoinhibitory effect
of the intramolecular interaction between the PYD-HIN
domains. This ligand binding is achieved via electrostatic
attractions between the positively-charged HIN domain
and negatively-charged dsDNA [218, 223, 255]. The
dsDNA is required to be at least 80 base pairs in length
and is conventionally from viral or bacterial origins
[256]. Given the sterile nature of VCI, it is likely that
AIM?2 is activated by host dsDNA instead because ische-
mic conditions produce anoxic depolarization and re-
lease of mitochondrial DNA into the cytosol due to
ATP-induced mitochondrial apoptosis. Coupled with the
extracellular release of nuclear and mitochondrial DNA
by injured neurons and glial cells, this provides the ap-
propriate activation signals in the form of dsDNA to
AIM2 [257, 258]. During CCH, DNA fragmentation has
been observed to occur in astrocytes and oligodendro-
cytes [130, 259]. Furthermore, it was recently shown that
CCH increases plasma levels of double-stranded DNA,
and induces AIM2 inflammasome-mediated neuropath-
ology and cognitive impairment in a mouse model of
VaD [71]. Moreover, CCH-induced receptor for ad-
vanced glycation end-products (RAGE) upregulation can
also promote DNA uptake into the cell via the action of
endosomes, hence providing a mechanism through
which extracellular DNA can interact with cytosolic
AIM2 [260, 261] (Fig. 4).

Formation of the Inflammasome complex
In general, stimulation of the inflammasome receptor
causes the LRR inhibitory unit to unfold from the
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NACHT domain [38, 216]. Consequently, the inflamma-  These caspases bind with their N-terminal CARD do-
some receptor reconfigures into an “open” structure to  main to the ASC specks via CARD-CARD domain inter-
allow homo-oligomerization with neighbouring inflam-  actions [217, 263], and therefore directly interact with
masome receptors. As more inflammasome receptors CARD domains on inflammasome receptors in the ab-
converge, they form a macro-molecular platform with  sence of the ASC adaptor. NLRP1 and NLRC4 receptors
their N-terminal PYD domains pointing towards each  can mediate ASC-independent inflammasome activation
other [224, 262]. A PYD domain attracts other PYD do-  [249, 264]. The structural formation of each major
mains via homotypic interactions. One of them is the inflammasome complex is explained below (Fig. 5).

adaptor protein, ASC, which facilitates inflammasome Following stimulation of the NLRP1 inflammasome re-
complex formation by binding to the PYD domain of the  ceptor, the FIIND domain undergoes autolytic proteoly-
inflammasome receptor platform using its N-terminal sis to facilitate activation and oligomerization to form
PYD domain through homo-oligomerization [38, 224].  the inflammasome core [220]. NLRP1 oligomers appear
Many ASC proteins will come together during this to interact with ASC via homotypic PYD-PYD interac-
process, forming a filamentous structure from the tions [220]. After ASC speck formation, the ASC speck
inflammasome receptor platform. These filamentous can recruit multiple effector inflammatory caspases via
macromolecular aggregates are known as ASC specks homotypic CARD-CARD interactions [219]. Despite be-
[263]. As such, the CARD domain on the C-terminal of ing able to mediate ASC-independent NLRP1 inflamma-
ASC is made available to bind with full-length caspases.  some activation, NLRP1 activity level is higher in the
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Fig. 5 A schematic diagram illustrating the assembly of the canonical and non-canonical inflammasome complexes. The formation of the
canonical inflammasome complex requires the activation of inflammasome receptors from the second signal. As the LRR inhibitory unit unfolds
from the NACHT domain, the receptors are in an “open” structure for homotypic oligomerization through their NACHT domain. Subsequently, the
PYD domain recruits the adaptor protein via the PYD domain on ASC. As numerous ASC adaptor proteins comes together, they will form a
filamentous structure with their CARD domain exposed. Consequently, effector proteins with their CARD domain can bind to the filamentous
structure via CARD-CARD interactions. Such protein aggregation triggers proximity-induced activation of total caspase-1, and — 8, leading to
cleavage of the inter-domain linker between the large and small units, producing active cleaved caspase-1 and -8. The above mentioned ASC-
dependent binding mechanism generally applies to all inflammasome complexes. However, NLRP1 can form an inflammasome complex without
the adaptor ASC. Using its C-terminal CARD domain, NLRP1 binds to the effector protein via the CARD-CARD domain. NLRC4 can also adopt the
same ASC-independent binding mechanisms with the CARD domain on the receptor. In the non-canonical inflammasome pathway, caspase-11
can undergo homo-oligomerization in the absence of a receptor and adaptor protein component via the CARD-CARD domain interaction. Similar
to the activation of total caspase-1 and -8, cleaved caspase-11 is produced upon proximity-induced activation. Abbreviations: NLR, nucleotide-
binding oligomerization domain-like receptor; NACHT, NAIP (neuronal apoptosis inhibitor protein) C2TA (class 2 transcription activator, of the
MHC) HET-E (heterokaryon incompatibility) and TP1 (telomerase-associated protein 1); LRR, leucine-rich repeat; PYD, pyrin domain; CARD, caspase
recruitment domain; NLRP1, NLR family pyrin domain containing 1; NLRP3, NLR family pyrin domain containing 3; NLRC4, NLR family CARD
domain-containing protein 4; AIM2, absent in melanoma 2; HIN200, hematopoietic interferon-inducible nuclear proteins with a 200-amino-acid
repeat; dsDNA, double-stranded DNA; ASC, apoptosis-associated speck-like protein containing a CARD; DED, death effector domain
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presence of an ASC speck [220] (Fig. 5). Prior to NLRP3
activation, priming must occur in the form of increased
expression and de-ubiquitination of NLRP3 [199, 201].
Assembly of the NLRP3 inflammasome also requires
ASC to be linearly ubiquitinated [265]. The NLRP3 re-
ceptor binds to ASC via homotypic PYD-PYD interac-
tions, and through the resulting ASC speck recruits
effector inflammatory caspases via homotypic CARD-
CARD interactions [221, 224] (Fig. 5). Upon binding of
NAIP to the ligand, a single NAIP oligomerizes with
multiple NLRC4 receptors. Phosphorylation of a single
evolutionarily conserved serine 533 residue in NLRC4 is
necessary for the assembly of the NAIP-NLRC4 inflam-
masome [266]. NAIP-NLRC4 then interacts with ASC
likely through homotypic CARD-CARD interactions,
given the absence of a PYD domain in the NAIP-NLRC4
receptor. ASC speck formation ensues and is accompan-
ied by recruitment of multiple effector inflammatory cas-
pases through homotypic CARD-CARD interactions.
NLRC4, however, possesses an innate CARD domain,
and so can recruit the effector inflammatory caspases in-
dependent of ASC, although the presence of ASC can
enhance the assembly of the NAIP-NLRC4 inflamma-
some complex [222, 249, 263] (Fig. 5). The PYD domain
of AIM2 possesses an intrinsic tendency to self-
aggregate, resulting in homo-oligomerization of several
AIM2 receptors after activation via dsDNA binding to
the HIN domain. The AIM2 receptor complex then re-
cruits ASC concomitant with ASC speck formation via
homotypic PYD-PYD interactions. AIM2 recruits mul-
tiple effector inflammatory caspases via homotypic
CARD-CARD interactions in an ASC-dependent man-
ner, due to the absence of CARD in the AIM2 receptor
[255, 267] (Fig. 5).

The molecular assembly of different inflammasome
complexes can vary between inflammasome receptors in
the canonical pathway. The ultimate purpose of inflam-
masome assembly is to bring together the effector cas-
pases in close proximity. Increasing the local
concentration of effector caspase-1 around the complex
facilitates dimerization of caspase-1 monomers, and en-
ables autoproteolytic activation [255, 267]. Subsequently,
a transient activity hub of cleaved caspase-1 p33/p10 is
produced for substrate catalysis. Different cell types and
inflammasome sizes influence the kinetics of p33/p10
processing. Therefore, the final product of cleaved
caspase-1 p20/pl0 serves as a classic hallmark of
caspase-1 activation as it indicates termination of prote-
ase activity [226, 268] (Figs. 2, 3 & 5). Unlike caspase-1,
which binds to the inflammasome complex via CARD-
CARD interactions, caspase-8 relies on its DED domain
to carry out heterotypic interactions with the adaptor
ASC. This is possibly due to the similarities with its self-
association between DEDs and PYDs domains. As such,
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caspase-8 is similarly able to undergo proximity-induced
activation, producing cleaved caspase-8 for substrate
processing [224, 269, 270]. Nonetheless, caspase-8 is
capable of cleaving inflammasome substrates (IL-1p) dir-
ectly via the complex formation of caspase recruitment
domain-containing protein-9 (CARDY), B-cell lymph-
oma/leukemia-10 (BCL10), Mucosa-associated lymphoid
tissue lymphoma translocation protein-1 (MALT1), ASC
and caspase-8. Caspase-8 can also interact with
receptor-interacting serine/threonine kinase 1 (RIPK1)
directly cleaving caspase-1 leading to caspase-1 activa-
tion [205, 206].

Organization of the canonical inflammasome complex
usually involves a receptor, adaptor and effector
caspases-1 and -8. However, in the non-canonical
inflammasome pathway, caspase-11 can undergo homo-
oligomerization in the absence of a receptor and adaptor
protein component. Upon binding of a stimuli such as
oxPAPC or LPS to the N-terminal CARD domain on
caspase-11, the CARD domain interacts with the same
domain on another caspase-11 to form a dimer [271,
272]. The dimer then interacts with others to form a
homo-tetramer, which then oligomerizes to induces
auto-proteolysis. As caspase-11 undergoes self-cleavage,
it releases the pro-domain from the catalytic domain of
caspase-11, producing biologically active cleaved
caspase-11 [271, 272] (Figs. 2, 3 & 5).

Impact of the Inflammasome signaling pathway

Upon the activation of the inflammasome signaling
pathway, the mature cytokines IL-1f and IL-18, are pro-
duced leading to the downstream inflammatory re-
sponse. Simultaneously, these effector proteins also
initiate a wide variety of cell death pathways such as
apoptosis, pyroptosis and secondary necrosis [38] (Fig.
2).

Proinflammatory effect of IL-1B and IL-18
The proinflammatory cytokines, IL-1p and IL-18, are
both transcriptionally upregulated during inflammasome
priming [199]. They are produced in the form of precur-
sor cytosolic proteins activated by canonical cleaved
caspase-1 and -8, while cleaved caspase-11 aids in the
release of these cytokines into the extracellular environ-
ment by inducing gasdermin pores [214, 268] (Fig. 2).
Following their production and release into the extra-
cellular environment, mature IL-1 and IL-18 serve as li-
gands towards the IL-1R1 and IL-18R on the plasma
membrane to facilitate an autocrine or paracrine effect.
Consequently, this activates the NF-kB and MAPK(s)
pathways to upregulate gene expression of several types
of inflammatory mediators [38, 198, 273, 274]. The first
type is proinflammatory cytokines (i.e. TNF, IL-1f, IL-6
and IL-8) that further propagate the inflammatory signal.
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The second is chemotactic cytokines (e.g. CXC-
chemokine ligand 8 and CX3C-chemokine ligand 1),
which attract peripheral immune cells such as neutro-
phils and macrophages to the damaged region. The third
type is adhesion molecules (e.g. E-selectin and ICAM-1)
that facilitate leukocyte infiltration into the brain paren-
chyma [275, 276]. These recruited peripheral immune
cells can initiate a similar inflammatory response, and
contribute to the pool of inflammatory mediators re-
leased from microglia and astrocytes [277, 278].

Effect of Caspase-1, — 8 and — 11 on cell death pathways
Apoptosis is a form of programmed cell death that en-
compasses the intrinsic and extrinsic apoptotic path-
ways. Activation of both pathways ultimately converge
to activate executioner caspase-3, leading to apoptosis
characterized by membrane blebbing, cell shrinkage, nu-
clear fragmentation, chromatin condensation, chromo-
somal DNA fragmentation and global mRNA decay
[279, 280]. Inflammasomes induce apoptosis via recruit-
ment and activation of caspase-8. Moreover, caspase-1 is
also implicated in apoptosis through caspase-1 mediated
cleavage of caspase-7 or caspase-3, both of which are in-
volved in the execution of apoptosis [207, 281]. Caspase-
11 can also activate caspase-3 to induce apoptosis in a
caspase-1 independent manner [282]. Besides its apop-
totic function, cleaved caspase-3 can induce secondary
necrosis by cleaving the hallmark protein, gasdermin E
to produce the N-terminal fragment (NT-GSDME). Sec-
ondary necrosis involves the oligomerization of these N-
terminal fragments, leading to pore formation in the
mitochondrial membrane and cellular surface [283] (Fig.
2), thus allowing cytochrome ¢ to be released into the
cytosol, further promoting apoptotic cell death [284].
Pyroptosis is an inflammasome-driven programmed
cell death pathway that is initiated by the activation of
caspase-1 and -11 resulting in cellular lysis [208, 210,
211]. Gasdermin D is an integral pyroptotic protein
comprised of an N-terminal domain capable of forming
a pore in the plasma membrane, and a C-terminal do-
main which represses the activity of the N-terminal gas-
dermin D domain (Fig. 2). Proteolytic cleavage of
gasdermin D by either caspase-1 or — 11 relieves the in-
hibitory effect of the C-terminal gasdermin D domain
on the N-terminal gasdermin D domain, allowing for
translocation of N-terminal gasdermin D to the plasma
membrane where it integrates and oligomerizes to form
a gasdermin D pore [208, 210, 211]. Pore formation re-
sults in K* efflux and influx of both Na* and water mol-
ecules, resulting in cell swelling and lysis if there is a
sufficient number of gasdermin D pores [208, 210, 211].
Pyroptosis is regarded as a proinflammatory form of cell
death whereby proinflammatory cytokines such as IL-1f
and IL-18 are usually restricted to the cytosol due to the
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lack of a secretory system but, along with other DAMPs
and inflammatory mediators, they can be released into
the extracellular environment after gasdermin pore for-
mation [208, 210, 211]. Recently, caspase-8 was also
demonstrated to cleave gasdermin D to induce pyropto-
sis [209]. In the absence of caspase-1 or gasdermin D,
NAIP-NLRC4 can recruit and activate caspase-8 to in-
duce a pyroptotic-like cell death involving the formation
of membrane pores in a gasdermin D-independent man-
ner [285].

Inflammasomes in Glial activation

As mentioned, microglia and astrocytes are key players
in mediating neuroinflammation and tissue damage.
Microglial cells are equipped with different PRRs that
screen the microenvironment in the resting state [286,
287]. In an RNA-sequencing transcriptome study using
mouse brain, gene expression of NLRP1, NLRP3, NLRC4
and AIM2 in the microglia was highest among all brain
cell types. Moreover, microglial expression of caspase-1
and IL-1p was around four and thirty fold higher than
neurons, respectively [288]. This primes microglia for
rapid activation when CCH induces ionic imbalance,
oxidative stress and inflammation. Canonical classifica-
tion of activated microglia is broadly described as either
proinflammatory M1-like or anti-inflammatory M2-like
phenotypes. M1-polarised microglia produce proinflam-
matory cytokines such as IL-1p and TNF-a that serve to
activate more microglia cells in a paracrine manner
[289]. However, emerging transcriptomic studies re-
vealed more disease-associated subtypes of microglia
such as Keratan sulfate proteoglycan (KSPG)-microglia
(associated with amyotrophic lateral sclerosis), highly ac-
tive “dark microglia” which interact with blood vessels
and synapses (associated with Alzheimer’s disease) and
CD11c-microglia which interact with oligodendrocytes
(associated with demyelination) [290]. Based on current
evidence, microglia are likely to promote inflammatory
and non-inflammatory responses via an involvement of
NLRP3 and AIM2 inflammasomes during VCI [71, 291].
In fact, a study showed reduced proinflammatory micro-
glia signatures in the hippocampus of mice with AIM2
deficiency upon CCH [71]. Attenuating NLRP3 inflam-
masome activity via pharmacological inhibitors during
CCH also reduces microglial overactivation, possibly due
to lower production of ROS during drug treatment
[291].

Astrocytes are another immune effector cell type in
the brain. Similar to microglial polarization states, acti-
vated astrocytes exist in two phenotypes based on trad-
itional understanding: neurotoxic Al and
neuroprotective A2 astrocytes [292, 293]. Beyond this
binary classification, reactive astrocytes were found to be
more heterogeneous in terms of their morphology,
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locality, cellular interaction, and molecular expression.
Therefore, the status of reactive astrocytes varies in a
context-, time- and stimulus-specific manner [294]. In
the context of neurodegenerative diseases, reactive astro-
cytes are consistently being identified with hypertro-
phied morphology and reduced expression of essential
ion and neurotransmitter channels and receptors such as
ATP-sensitive inward rectifier potassium channel 10
(Kir4.1), glial glutamate transporter 1 (GLT1), and in-
creased expression of the glial fibrillary acidic protein
(GFAP). This state of reactive astrocytes is commonly
observed in Al astrocytes that release proinflammatory
and toxic mediators [294—297]. Both Al and A2 pheno-
types were present in conjunction with inflammasome
activation following CCH.

Astrocytes have been shown to express NLRPI,
NLRP3, AIM2 and NLRC4 receptors under different
conditions. However, genetic deletion of the AIM2 re-
ceptor did not affect the expression of GFAP in either
the cortex or hippocampus of mice during CCH, sug-
gesting potential involvement of other inflammasome re-
ceptors [71, 257, 298, 299]. We recently collected
unpublished data that the inflammasome signaling path-
way is activated in fibrous and protoplasmic astrocytes
under in vitro ischemic conditions, resulting in mature
cytokine production, and apoptotic and pyroptotic cell
death. Hence, we postulate that inflammasome activa-
tion may serve as a signal for astrocyte polarization.

Inflammasomes in BBB dysfunction

BBB disruption can arise from neuroinflammation, pri-
marily through degradation of various tight junction
proteins (TJPs). Matrix metalloproteinases (MMPs) re-
leased by glial cells can break down the extracellular
matrix [300] and have been implicated in the disruption
of the BBB under ischemic conditions [104]. MMP-2
and MMP-9 are known to be involved in BBB disruption
and primarily localized to ischemic regions of astrocytic
foot processes, during which TJPs undergo degradation
over time [301]. Inflammasome signaling contributes to
BBB dysfunction via the action of IL-1f, which can up-
regulate the expression and release of MMPs from glial
cells [302, 303]. Application of exogenous IL-1f elicits
BBB dysfunction in rat and human brain microvascular
endothelium [94, 304]. In addition, both IL-1f and IL-18
can upregulate expression of various chemokines in the
extracellular space and cell adhesion molecules on the
endothelium [276, 305]. Cell adhesion molecules, such
as ICAM-1 and VCAM, attract and facilitate immune
cell infiltration into the brain during neuroinflammation.
These peripheral cells can also release active MMP-9,
further exacerbating BBB dysfunction [306, 307]. A re-
cent study showed that an interleukin-1 receptor antag-
onist preserved BBB integrity, attenuated changes in
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expression and localization of TJPs and MMPs in a rat
model of ischemia-reperfusion [308]. Inhibition of
caspase-1 enzymatic activity in a similar model further
revealed caspase-1 to induce BBB dysfunction through
the activation of pyroptosis [309]. Therefore, a number
of studies support a critical role of inflammasomes in
BBB disruption, especially following disruption to CBF.

As an essential component of the BBB, the endothelial
cell expresses a wide range of inflammasome receptors
such as NLRP1, NLRP3 and NLRC4 [310]. Studies
showed endothelial NLRP3 in modulating the BBB dur-
ing different disease conditions, but evidence for CCH is
still lacking [311-313]. NLRP3 may mediate BBB dys-
function for CCH based on in vitro and in vivo evidence
from studies focusing on ischemic brain injury. Pharma-
cological inhibition of NLRP3 inflammasome activity has
been shown to attenuate cerebral ischemia-induced BBB
dysfunction by reducing its permeability and upregulat-
ing TJPs [313]. In addition, the study confirmed that re-
duced NLRP3 activity in endothelial cells increased
expression of TJPs, cell viability and reduced barrier
leakage [313]. This mechanism observed may explain the
BBB dysfunction that is observed during CCH.

Pericytes also express the NLRP3 receptor along with
other NLRP and NLRC inflammasome receptors [314].
Upon stimulation of pericytes by oxidative stress and
proinflammatory mediators, in vitro cerebral pericytes
demonstrated upregulation of NLRP3 and NLRC4
mRNA expression [314]. Despite an increase in inflam-
masome receptor mRNA expression, activation of the
inflammasome complex was not detected in cerebral
pericytes following exposure with a wide range of
DAMPs [314]. However, as pericytes are increasingly im-
plicated in BBB dysfunction during CCH [91, 100, 101],
additional studies are needed to establish the role of
inflammasomes in pericytes during VCI.

Inflammasome mediated cell death and neuronal loss

Inflammation is closely linked to cell death at the mo-
lecular level. The cell death pathway can be triggered by
various proinflammatory mediators [315]. As DAMPs
initiate the inflammasome signaling pathway via the
NLR family and interferon-inducible protein, it activates
key effector proteins such as caspase-1 and caspase-8 to
cleave caspase-3, resulting in apoptosis and secondary
necrosis [206, 283]. Together with the non-canonical
caspase-11, these effector proteins catalyze pyroptosis
via cleavage of gasdermin-D (GSDMD) [203, 208, 210].
Inhibition of caspase-1 reduces inflammasome activation
and cell death in primary cortical neurons and murine
microglial cells subjected to ischemia-like conditions
[200, 203]. The NLRP3 inhibitor, MCC950, decreases
apoptotic cell death and brain infarct size in a mouse
model of ischemic stroke [316]. In a mouse model of
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VCI, AIM2 knockout mice expressed reduced inflamma-
some activity as well as apoptotic and pyroptotic cell
death in neurons and microglia in the cortex and hippo-
campus. Similarly, a higher neuronal count was observed
in the CA2 and CA3 area of the hippocampus in AIM2
knockout mice during CCH [71]. Therefore, the AIM2
inflammasome is involved in CCH-induced neuroinflam-
mation by mediating cell death and neuronal loss during
VCI disease progression.

Role of Inflammasomes in demyelination and WMLs
Numerous studies have indicated a close association of
inflammasome activity with the formation of WMLs that
often occur together with activated microglia [77, 203,
317]. As mentioned, activated microglia release numer-
ous inflammatory mediators that contribute to demye-
lination, including IL-1p and IL-18 that are produced
during inflammasome activation. IL-1f was shown to
impede oligodendrocyte migration and white matter re-
pair in mouse models of VCI [69]. Conversely, reduced
secretion of IL-1p preserved myelin integrity and attenu-
ated the formation of WMLs under CCH [71]. Anti-
inflammatory pharmaceutical interventions and trans-
genic animal models have attenuated WML formation
via suppressing microglial activation, and preventing
caspase-1 and IL-1P production [70, 318, 319]. Other
than in microglia, inflammasomes are also activated dur-
ing CCH in oligodendrocytes. Our recent study found
increased levels of cleaved caspase-1 in oligodendrocytes
of mice after 30 days of BCAS [71]. Similar observations
of inflammasome-mediated apoptotic and pyroptotic cell
death markers were also found within oligodendrocytes.
The evidence suggests that the inflammasome signaling
pathway likely plays a causative role upstream of CCH-
induced WML formation.

Evidence of inflammasome activity in VCl in
humans

An involvement of inflammasome activation and cyto-
kine production is related to the risk factors that drives
the early disease state of VCL. In tissue samples from pa-
tients with atherosclerosis, IL-1p is detected within
endothelial cells of plaque microvessels [320]. Similarly,
high levels of NLRP3, ASC, caspase-1, IL-1B, and IL-18
mRNA expression was observed in carotid artery pla-
ques of patients with cerebrovascular disease [321].
Studies of polymorphisms of IL-1p among small vessel
disease patients, there was a higher frequency of the IL-
1P allele in comparison to controls [322], suggesting that
elevated levels of IL-1f may contribute to the progres-
sion of small vessel disease leading to VCI. Genetic in-
vestigation of coronary artery disease patients also found
that patients carrying the G allele of NLRP3 rs10754558
had more severe coronary artery stenosis and higher
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levels of serum IL-1fB [323]. With the G allele of NLRP3
rs10754558 enhancing the mRNA stability of NLRP3, it
increases the mRNA expression of this inflammasome
receptor, potentially contributing to the pathophysiology
of coronary artery stenosis [323, 324]. Besides chronic
vascular conditions, inflammasome activity has also been
identified in VCl-associated acute conditions such as
stroke [38]. By preventing binding of IL-1p with its re-
ceptor, a clinical trial showed that acute stroke patients
experienced a better outcome following the administra-
tion of an interleukin-1 receptor antagonist (i.e. ana-
kinra) [274]. This was shown by a reduction in
inflammation due to lower levels of neutrophils and C-
reactive proteins in the systemic circulation following a
cerebral infarction. Among patients with cortical infarc-
tion, the use of an interleukin-1 receptor antagonist sig-
nificantly reduced long-term disability after three
months following cerebral ischemia; demonstrating the
beneficial effect of reducing inflammasome activation
and IL-1P secretion in cerebral vascular disease [274].
Similarly, IL-18 was shown to be more commonly asso-
ciated with peripheral arterial occlusive disease, and
cerebrovascular events [325], whereby an elevated level
of IL-18 was shown to be evident in the plasma of acute
coronary syndrome patients [326].

As the disease progresses to late-stage VCI, the actions
of inflammasomes persist. In post-mortem samples from
VaD patients, increases in the concentration of IL-13 was
observed in the frontal cortex and hippocampus [66, 193].
Through cytokine profiling, studies of serum and plasma
of VaD patients showed levels of IL-1( to be higher than
in healthy controls. The relative increase in IL-1B was
higher than other proinflammatory cytokines such as
TNF-a and IL-6 [64, 65]. Nonetheless, some studies face
challenges in detecting IL-1 in their patient samples
[183, 184, 187]. For example, Mulugeta et al. did not de-
tect any IL-1p in their patient brain tissues using ELISA
kits [184]. Paganelli et al. found detectable levels of IL-1p
only in 13% of all their serum samples through the same
method [187]. Thus there is substantial variability in the
interpretations of IL-1f in VCI because the levels present
are near the limits of precise measurement by ELISA.

In addition to the presence of inflammasome-mediated
proinflammatory cytokine production, immunostaining of
inflammasome receptors, NLRP3 and AIM2, was greater in
white matter lesions of patients with cerebral infarction
[317]. Together these studies provide evidence of inflamma-
some activation in a severe state of VCI, highlighting the
prominence of inflammasome signaling in the disease pro-
gression of VCL

Conclusions
This  review  illustrates the  mechanisms  of
inflammasome-mediated neuroinflammation under CCH
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in VCIL. By providing direct evidence of inflammasome
activation in VCI animal models and patients, we sug-
gest that the critical involvement of the inflammasome
signaling pathway in the pathogenesis of VCI may be
mediated through CCH [64-66, 71, 118, 119, 193, 317].
Most importantly, inflammasome-mediated inflamma-
tory mechanisms are early events that persist till the late
stage of VCI; this sheds light on the inflammasome sig-
naling pathway as a potential therapeutic target [64—66,
71, 118, 119, 193, 317]. By reducing inflammasome ac-
tivity levels, we can attenuate its influence on various
pathogenic cellular mechanisms and structural damage
observed during the disease progression of VCI [119,
291]. There are clinically approved therapeutic agents
that can effectively target the actions of IL-1f: anakinra,
canakinumab, and rilonacept. Moreover, agents that
neutralize the effects of IL-18, Tadekinig alfa and
GSK1070806 are also undergoing clinical trials [327]. It
is essential to keep in mind that the inflammasome sig-
naling pathway is a significant player within our innate
immune system and physiologically guards against infec-
tious agents [328]. Hence, there is a challenge to main-
tain an equilibrium in reducing inflammasome activity
while maintaining our defense against infectious agents.
Thus, the search for therapeutic interventions that se-
lectively target specific types of inflaimmasome com-
plexes may offer a greater safety and efficacy profile in
the long term, especially for chronic diseases such as
VCL
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MMPs: Matrix Metalloproteinases; MPB: Myelin Basic Protein;

mtROS: Mitochondrial ROS; NADPH: Nicotinamide Adenine Dinucleotide
Phosphate; NAIP: NLR Apoptosis Inhibitory Protein; NAIP: NLR Apoptosis
Inhibitory Protein; NF-kB: Nuclear Factor Kappa B; NLR: Nod-Like Receptor;
NLR: Nucleotide-binding ligomerization domain-like receptor; NLRC4: NLR-
CARD Containing 4; NT-GSDMD: N-terminal fragment GSDMD; NT-GSDME: N-
terminal fragment GSDME; OH: Hydroxyl Radical; oxPAPC: Oxidized 1-
palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine; P2X4: P2X
purinoceptor 4; P2X7: P2X purinoceptor 7; PAMPs: Pathogen-Associated
Molecular Patterns; PLA,: Phospholipase A2; PKR: Protein kinase R;
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PRRs: Pattern Recognition Receptors; PYD: Pyrin; PYHIN: Nuclear localization
(HIN) domain-containing; RAGE: Receptor for Advanced Glycation End-
products; RIPK1: Receptor-Interacting serine/threonine Kinase 1; ROS: Reactive
Oxygen Species; SVD: Small Vessel Disease; TJPs: Tight Junction Proteins;
TLRs: Toll-Like Receptors; TNF: Tumor Necrosis Factor; TP1: Telomerase-
associated Protein; TRPM2: Transient receptor potential melastatin 2;

TXNIP: Thioredoxin-interacting protein; TRX: Thioredoxin; UCCAQ: Unilateral
Common Carotid Artery Occlusion; VaD: Vascular Dementia; VCAM: Vascular
Cell Adhesion Molecule; VCI: Vascular Cognitive Impairment; WML: White
Matter Lesion
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