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Transactive response DNA binding protein of 43 kDa (TDP-43) is an intranuclear protein encoded by the TARDBP
gene that is involved in RNA splicing, trafficking, stabilization, and thus, the regulation of gene expression.
Cytoplasmic inclusion bodies containing phosphorylated and truncated forms of TDP-43 are hallmarks of
amyotrophic lateral sclerosis (ALS) and a subset of frontotemporal lobar degeneration (FTLD). Additionally, TDP-43
inclusions have been found in up to 57% of Alzheimer's disease (AD) cases, most often in a limbic distribution, with
or without hippocampal sclerosis. In some cases, TDP-43 deposits are also found in neurons with neurofibrillary
tangles. AD patients with TDP-43 pathology have increased severity of cognitive impairment compared to those
without TDP-43 pathology. Furthermore, the most common genetic risk factor for AD, apolipoprotein E4 (APOE4), is
associated with increased frequency of TDP-43 pathology. These findings provide strong evidence that TDP-43
pathology is an integral part of multiple neurodegenerative conditions, including AD. Here, we review the biology
and pathobiology of TDP-43 with a focus on its role in AD. We emphasize the need for studies on the mechanisms
that lead to TDP-43 pathology, especially in the setting of age-related disorders such as AD.

Background

Alzheimer’s disease (AD), the leading cause of dementia,
is a heterogeneous neurodegenerative disorder in terms
of clinical presentations and the density and distribution
of the cardinal neuropathologic lesions. The neuropatho-
logic hallmarks of AD are senile plaques composed of
extracellular deposits of amyloid-f (AB) and neurofibril-
lary tangles composed of intracellular aggregates of tau
protein with multiple post-translational modifications
including phosphorylation. Senile plaques are compli-
cated and heterogeneous lesions that contain not only
amyloid deposits and tau positive neurites, but also
neurites with degenerating pre- and post-synaptic ele-
ments (so-called dystrophic neurites), as well as activated
microglia and reactive astrocytes [1]. AP deposits within
the walls of blood vessels in the form of amyloid angio-
pathy are found in many patients with AD, but it is also
found in other neurologic disorders [2]. Tau deposits are
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also found in neuronal cell processes (“neuropil
threads”) and in dystrophic neurites within senile pla-
ques [1, 3]. Neurofibrillary tangles are not exclusive to
AD, but are found in a wide range of neurological disor-
ders [4], as hereditary disorders [5] or secondary patho-
logic processes [6], due to environmental or genetic
factors. Based on the density of neurofibrillary tangles in
the hippocampus relative to those in the neocortex, AD
can be classified into three clinicopathologic subtypes:
typical AD, hippocampal sparing AD, and limbic pre-
dominant AD [7]. The clinicopathologic classification of
AD subtypes has recently been confirmed and extended
in living patients with neuroimaging methods [8, 9],
identifying additional subtypes, including minimal
change AD and AD with asymmetrical neocortical
involvement.

Clinically, the two major presentations of AD can be
classified as amnestic and non-amnestic. The former is
characterized by deficiencies in short-term memory, re-
call and learning, which are the most common clinical
presentations of typical and limbic predominant
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subtypes of AD. The latter shows impairment in other
cognitive domains, such as language, visuospatial skills,
or executive functioning. This is often associated with
hippocampal sparing AD.

In addition to senile plaques and neurofibrillary tan-
gles, many AD brains have other pathological lesions,
such as cerebrovascular pathology, Lewy bodies, argyro-
philic grain disease, hippocampal sclerosis, cerebral
amyloid angiopathy, and transactive response DNA
binding protein of 43 kDa (TDP-43) pathology [10, 11].
Importantly, these additional pathologies significantly in-
crease the risk for dementia compared to patients with
only one pathology [12]. The mixed pathologies also
lower the threshold and accelerate the progression for
clinical diagnosis of AD [13]. More recently, Spina and
coworkers systematically investigated co-pathologies in
early-onset and late-onset AD patients and found that
the number of co-pathologies was associated with worse
cognitive performance [11]. In this review, we focus on
TDP-43 in aging and AD from clinical, pathological, and
basic research perspectives.

Biology of TDP-43

TDP-43 is a 43 kDa heterogeneous nuclear ribonuclear
protein (hnRNP) composed of 414 amino acids and is
encoded by the TARDBP gene located on chromosome
1 (1p36.22) [14]. TDP-43 is synthesized in the cytoplasm
and shuttled into the nucleus where it primarily resides
to perform its physiological functions.

Biological function of TDP-43
The function of TDP-43, much like other hnRNPs, is to
regulate gene expression and other aspects of RNA pro-
cessing including RNA splicing, mRNA turnover, RNA
trafficking, and microRNA (miRNA) biogenesis [15-22].
TDP-43 targets over 4,000 different mRNA transcripts
[23], ranging from disease-associated transcripts [18], to
its own mRNA transcript [17]. Disruption of the proper
regulation of TDP-43 may contribute to its pathogenesis.
Studies have shown that TDP-43 self-regulates through
a negative feedback loop where TDP-43 destabilizes its
mRNA transcript by binding to the 3’ untranslated re-
gion [17]. Interestingly, TDP-43 has been shown to
down-regulate tau expression by destabilizing its mRNA
transcripts [18]. Furthermore, TDP-43 might regulate
the ratio of 4-repeat tau and 3-repeat tau via alternative
splicing of tau exon 10 [24]. However, the regulation of
tau expression by TDP-43 was not replicated in another
independent study of AD [25]. Thus, the relationship be-
tween TDP-43 and the expression of tau remains un-
clear and needs to be further investigated.

Additionally, TDP-43 plays a role in the cellular stress
response [15, 26-28]. If a cell is exposed to certain
stressors (i.e, heat shock, oxidative stress, or viral
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infection), it can regulate levels of mRNA to conserve
energy and prioritize cell survival [29, 30]. Stress gran-
ules are cytoplasmic foci in response to cellular stress
that contain non-essential RNA. TDP-43 associates with
ribosomes in stress granules to temporarily halt transla-
tion and promote cytoprotective protein synthesis [15,
31].

TDP-43 has been reported to regularly shuttle between
the cytoplasm and nucleus depending on transcriptional
needs [32]. Interestingly, low levels of TDP-43 have even
been found to reside inside of mitochondria in human
motor and cortical neurons; however, age-matched neu-
rons from amyotrophic lateral sclerosis (ALS) and fron-
totemporal lobar degeneration (FTLD) patients
expressed a significantly higher amount of mitochondrial
TDP-43, reportedly altering their morphology and
impairing mitochondrial function [33].

Protein structure of TDP-43

The structure of TDP-43 is composed of an N-terminal
domain, a nuclear localization sequence (NLS), two
RNA binding domains (RBD1 and RBD2), a nuclear ex-
port signal (NES), and a C-terminal glycine rich domain
(GRD) (Fig 1) [34]. The protein also has an amyloido-
genic core region (residues 311-360) with two alpha-
helices that convert into beta sheets in TDP-43 aggre-
gates [35]. The NLS is critical for physiological function,
as mutations or deletions of the NLS result in mislocali-
zation and aggregation of TDP-43 that are characteristic
of disease models [36-38]. Importin-a facilitates the
transport of TDP-43 into the nucleus by binding to the
NLS. The role of the NES in TDP-43 remains controver-
sial. The export of TDP-43 from nucleus to cytoplasm is
thought to be mediated by exportin XPO1 binding to
the NES in the second RBD [39, 40]; however, recent
data suggests that the export of TDP-43 from the nu-
cleus does not require either XPO1 or the NES, but in-
stead is exported through passive diffusion [37, 41-44].
The function of the N-terminus is to regulate the homo-
dimerization of TDP-43 to ensure proper folding and
mRNA splicing [45]. The C-terminus is important for
mRNA splicing and hnRNP interactions, and it is also
thought to play a role in the formation of TDP-43 inclu-
sions [46]. Additionally, this portion of the protein has
been referred to as a prion-like domain due to its low
complexity and high proclivity for aggregation, as well as
being the site for over 50 sporadic and familial ALS-
associated mutations [34, 47-49].

Polymorphisms of TARDBP gene and disease risks

Mutations in the TARDBP gene are mainly associated
with ALS and located along the glycine rich C-terminal
domain (Fig 1). In particular, TARDBP mutants, such as
Q331K and M337V, have been well studied for their
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Fig. 1 Protein structure of transactive response DNA binding protein of 43 kDa (TDP-43). TDP-43 is a 414 amino acid protein with a nuclear
localization sequence (NLS) followed by two RNA binding domains (RBD1 and RBD2), a nuclear export sequence (NES), and a glycine rich prion-
like (GRD) C-terminus. The mutations reported to increase the risk of ALS (red), FTLD (blue), and AD (orange) are indicated
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associations to ALS [50]. Fewer TARDBP mutations, in-
cluding P112H [51] and G295S [52], have been linked to
FTLD. A reported mutant, 1383V, has been implicated
in both ALS and FTLD [52-55]. In general, most of the
disease-associated mutations in the TARDBP gene are
associated with an increase in TDP-43 aggregation and
toxicity [48]. Interestingly, there are reports of a rare
missense mutation in the NLS region of TDP-43, A90V,
which is speculated to increase the risk of AD through a
loss-of-function mechanism [56-58].

TDP-43 pathology in ALS and FTLD

Pathological forms of TDP-43 were first identified in
2006 when ALS and FTLD patients were found to have
tau-negative, ubiquitin-positive cytoplasmic inclusion
bodies [59-61]. The pathogenic mechanisms in these
brains ultimately result in TDP-43 depletion from the
nucleus, TDP-43 mislocalization into the cytoplasm, and
the formation of insoluble aggregates that contain TDP-
43 with multiple posttranslational modifications includ-
ing ubiquitination, phosphorylation, and truncation [59—
63]. These TDP-43 inclusion bodies found in neurons,
neuronal cell processes, and glia are now characteristic
of the pathology in the most common forms of ALS and
FTLD [60, 63, 64].

Subtypes of TDP-43 pathology in ALS and FTLD

Based on the morphology, cell type, and distribution of
TDP-43 pathology, FTLD-TDP can be classified into
four main subtypes [65—69] (Fig 2). Type A is character-
ized by compact neuronal cytoplasmic inclusions (NCls)
and short dystrophic neurites (DNs) with occasional
neuronal intranuclear inclusions (“cat-eye” inclusions)
(NIIs) distributed preferentially in upper neocortical
layers. Type B is characterized by diffuse granular NCls
and sparse DNs with inclusions showing no preference
for superficial or deep neocortical layers. Oligodendro-
glial cytoplasmic inclusions are common in affected cor-
tices and subcortical white matter, especially Type B
cases associated with motor neuron disease. Type C is

characterized by numerous DNs predominantly in
superficial and deep neocortical layers, which are longer
and thicker than those seen in Type A. Sparse NCls are
detected in the neocortex, but dense, compact, and
round NCIs (“Pick body-like”) are frequent in the hippo-
campal dentate gyrus and in the basal ganglia, especially
the putamen. The most distinctive feature of Type D is
the presence of numerous NIIs, including both round in-
clusions and “cat-eye” type inclusions. Type D has vari-
able DNs and NClIs. A fifth subtype, Type E, has been
proposed [68], but it is less widely accepted. The charac-
teristic features of Type E are granulofilamentous neur-
onal inclusions, abundant grains, and oligodendroglial
inclusions that affect all layers of the neocortex. Among
the TDP-43 subtypes, Type A is the most common type,
followed by Type B. This pathologic subtyping has a
good correlation with clinical phenotypes and genetics.
Type A is most often associated with behavioral variant
frontotemporal dementia (bvFTD) or progressive non-
fluent aphasia (PNFA), while Type B is associated with
bvFTD with or without motor neuron disease (MND).
Most cases of FTLD due to GRN mutations have Type
A; many, but not all cases of FTLD with C9ORF72 mu-
tations have Type B. Semantic dementia (SD) and
bvFTD are common clinical phenotypes in Type C, but
no genetic association has been reported. Type D is as-
sociated with frontotemporal dementia (FTD) and
Paget’s disease of bone caused by mutations of VCP gene
[70]. This classification has been demonstrated to be
supported by clinical, biochemical, and genetic correl-
ational studies for FTLD-TDP [69], but needs to be fur-
ther examined in AD cases to evaluate its pathological
significance.

Progression pattern of TDP-43 pathology in ALS and FTLD

Pathological progression of TDP-43 varies depending
upon the underlying neurodegenerative disease with dif-
ferent progression patterns proposed for FTLD and ALS
by Brettschneider et al [71, 72]. In bvFTD, stage 1 is as-
sociated with the lowest level of TDP-43 pathology in
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Fig. 2 Representative images of TDP-43 pathology subtypes in FTLD-TDP brains. (A) Immunohistochemistry with an anti-phosphorylated-TDP-43

antibody (pSer409/pSer410) shows numerous neuronal cytoplasmic inclusions, short dystrophic neurites, and neuronal intranuclear inclusion
(inset) in Type A; diffuse granular neuronal cytoplasmic inclusions in Type B; and numerous thick and long dystrophic neurites in Type C, in the
superficial layer of the midfrontal gyrus (upper panel). In the dentate gyrus (lower panel), Type A shows compact neuronal cytoplasmic inclusions;
Type B shows diffuse granular neuronal cytoplasmic inclusions; and Type C shows Pick body-like neuronal cytoplasmic inclusion. Scale bar = 50
pm. (B) A summary of clinical, pathological, and genetic features of TDP-43 pathology subtypes. NCI: Neuronal cytoplasmic inclusion; NiI: Neuronal
intranuclear inclusion; DN: Dystrophic neurite; GCI: Glia cytoplasmic inclusion; DG: Dentate gyrus; FTD: Frontotemporal dementia; bvFTD:
Behavioral variant frontotemporal dementia; PNFA: Progressive non-fluent aphasia; MND: Motor neuron disease; and SD: Semantic dementia

the basal and anterior portions of the prefrontal cor-
tex, the pathology then invades other regions of the pre-
frontal cortex including the middle frontal gyrus
and insular cortex as stage 2, leading into the motor cor-
tex and parietal cortical areas as stage 3, and finally
reaches stage 4, the most advanced stage, with wide-
spread and high density TDP-43 pathology involved in
the occipital cortex [71]. The staging scheme for ALS in-
cludes early involvement of the motor cortex, brainstem
and spinal cord (stage 1), prefrontal cortex (stage
2), postcentral cortex and striatum (stage 3), and finally,
TDP-43 pathology infiltrates the anteromedial temporal
lobe (stage 4) [72].

Pathogenesis of TDP-43 in ALS and FTLD

Ubiquitination, phosphorylation, and truncation modi-
fies the conformation of TDP-43, as well as its size and
charge, contributing to the decreased shuttling into the
nucleus [73-75]. Ubiquitin commonly binds to proteins
to target them for eventual degradation. Lys-84, one of
the multiple TDP-43 ubiquitination sites, is reported to

be involved in the nuclear import of TDP-43 [76]. TDP-
43 is phosphorylated most often at serine residues but
can also be phosphorylated at tyrosine or threonine resi-
dues. The serine residues most often affected are serines
403, 404, 409 and 410; with serines 409 and 410 being
the most common [77, 78]. Cytoplasmic TDP-43 can be
cleaved by calpains and caspases into N-terminal frag-
ments and C-terminal fragments (CTFs) with molecular
weights of 35 and 20-25 kDa, respectively [79-81].
These fragments, in particular the CTFs, have been
found to induce formation of ubiquitinated and phos-
phorylated cytoplasmic TDP-43 aggregates in vitro [82].
It is possible that neither phosphorylation nor ubiquiti-
nation is necessary for TDP-43 aggregation. Early-stage
inclusions are neither ubiquitinated nor phosphory-
lated, and ubiquitination is usually associated with
late stages in the aggregation process of in vitro neur-
onal cell culture models [79, 83]. Additionally, the po-
tential lack of the NLS, precluding TDP-43 from
shuttling back to the nucleus, may contribute to for-
mation of aggregates [73].
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An impairment in the clearance of TDP-43 may also
contribute to the pathogenic process. An in vitro study
has indicated that soluble TDP-43 is degraded by the
ubiquitin-proteasome system, while insoluble TDP-43
aggregates are degraded via the autophagy system [84].
Other investigators determined that TDP-43 has a KFER
Q-like sequence in the RBD1 domain, specifically QVKK
D (amino acids 134 to 138), that allows Hsc70 binding
and degradation of soluble, non-aggregated TDP-43 by
chaperone-mediated autophagy [85]. Interestingly, deg-
radation of TDP-43 species, particularly the CTFs, were
much higher by the ubiquitin-proteasome system than
by autophagy [85], suggesting that TDP-43 can be
cleared through both mechanisms depending on its spe-
cific form.

In a non-diseased state, a balance between soluble and
insoluble forms of RNA binding proteins (including
TDP-43) and cell stress granules is maintained in the
cytoplasm primarily due to their reversibility during cel-
lular stress response [31]. In ALS and FTLD, this bal-
ance is possibly compromised due to the increased
presence of aggregated TDP-43 within the cytoplasm,
which in turn may increase cellular stress that leads to
the formation of additional stress granules and the ag-
gregation of RNA binding proteins, acting as seeds for
TDP-43 aggregation [31]. TDP-43 can also be found
within stress granules themselves depending on the con-
ditions used to induced stress. For example, stress in-
duced by sodium arsenite produces increased TDP-43 in
stress granules [15, 86]. It has also been reported that
TDP-43 inclusion bodies co-localize with markers of
stress granules [26, 78, 86—89]. Interestingly, only the
full length TDP-43 species, but not the CTFs, are re-
cruited into stress granules, which requires both the
RBD1 and GRD domains [90]. On the other hand, some
investigators suggested that co-localization of TDP-43
with stress granules depends on RNA-bound forms of
TDP-43. RNA-bound TDP-43 in stress granules is sol-
uble, while free TDP-43 can form insoluble aggregates
independent of stress granules [15, 91]. Together, the re-
lationship between stress granules and TDP-43 path-
ology is a research focus that needs further investigation.

Gain of toxic and loss of normal function of TDP-43 in ALS
and FTLD

Neuronal death associated with pathological TDP-43 is
thought to be caused by a combination of both a toxic
gain of function, as well as a loss of physiological func-
tion associated with depletion of TDP-43 from the nu-
cleus [73]. Oligomeric and cytoplasmic aggregates of
TDP-43 have been shown to be cytotoxic both in vitro
and in vivo [92-95]. Additionally, mislocalized and ag-
gregated TDP-43 can enhance mislocalization of nuclear
TDP-43 and hinder intracellular transport [20, 47, 96—
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98]. Cytoplasmic mislocalization of TDP-43 may predis-
pose the cell to stress since this has been shown to be
associated with markers of stress response in cell culture
model systems [47, 91, 99, 100].

Loss of function of TDP-43 is another mechanism im-
plicated in neuronal loss in ALS and FTLD. Studies in
mouse models rarely detect TDP-43 cytoplasmic inclu-
sion bodies; however, neurodegeneration associated with
loss nuclear TDP-43 can be evident [101]. In humans
with C9ORF72-linked FTLD, there is loss of nuclear
TDP-43 at pre-symptomatic stages [102]. Furthermore,
the mere lack of nuclear TDP-43 is sufficient to cause
neuronal atrophy [103]. This observation suggests that
loss of nuclear TDP-43 is an early pathological event
that might drive neurodegeneration. Additionally, loss of
nuclear TDP-43 may modify chromatin accessibility
leading to altered gene expression [20, 27, 47, 97, 104—
111].

Interestingly, nuclear TDP-43 suppresses splicing of
non-conserved cryptic exons, reducing the number of
frameshift or nonsense mutations in mRNA tran-
scripts [104, 112]. Patients with ALS or FTLD have
impairments in non-conserved cryptic exon suppres-
sion function leading to the decay of mutated tran-
scripts and disturbance in translation [110, 111, 113].
Cryptic exon splicing has also been noted in AD with
TDP-43 pathology, including those with cytoplasmic
inclusion bodies and those with only nuclear deple-
tion of TDP-43, suggesting that impairments of TDP-
43 cryptic exon repression may be an early event in
TDP-43 pathogenesis in FTLD, ALS and a subset of
patients with AD [114].

TDP-43 pathology in AD

TDP-43 pathology is frequently detected in pathologic-
ally confirmed AD brains in up to 57% of AD cases [10,
115-123], where it has been associated with worse brain
atrophy and greater memory loss in AD patients [116].
TDP-43 species have been shown to colocalize with se-
nile plaques and neurofibrillary tangles, with experimen-
tal evidence suggesting a direct interaction between
TDP-43 and AP or tau [122, 124-128]. Furthermore,
TDP-43 pathology in AD is associated with the severity
of AD pathology, including higher Braak neurofibrillary
tangle stages and Thal amyloid phases [129]. Addition-
ally, TDP-43 NCIs in AD cases exhibit a variety of TDP-
43 species with distinct patterns in terms of TDP-43
phosphorylation sites and the presence or absence of
non-phosphorylated, N-terminal and C-terminal epi-
topes [130]. Altogether, it suggests that TDP-43 path-
ology could play a role in AD progression or be
secondary to reactive changes that occur in advanced
AD (Fig 3).
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Fig. 3 lllustration of the involvement of TDP-43 in the progression of Alzheimer’s disease. In the brain of Alzheimer's disease (AD), the amyloid-3
(AB) peptide is produced through the proteolytic processing of a transmembrane protein, amyloid precursor protein (APP) by 3- and y-secretases.
The accumulation of soluble AB monomers in the brain parenchyma leads to the formation of AR oligomers, fibrils, and eventually AR plaques,
due to overproduction and/or impaired A( clearance pathways contributing to the development of AD. The pathological changes of tau protein
decrease its microtubule binding capacity and disrupts microtubule stability causing microtubule disintegration. The intracellular aggregates of
tau protein form the neurofibrillary tangles. Tau deposits are also found in neuronal cell processes (“‘neuropil threads”) and in dystrophic neurites
within AR plaques. AR plaques are heterogeneous lesions containing not only amyloid deposits and tau-positive neurites, but also neurites with
degenerating pre- and post-synaptic elements (neurite dystrophy), as well as activated microglia, reactive astrocytes, and dysfunction of
oligodendrocytes causing demyelination. TDP-43 is synthesized in the cytoplasm and retains the ability to shuttle from the cytoplasm into the
nucleus where it primarily resides to perform its physiological functions such as RNA splicing. During the progression of AD, the pathogenic
events lead to TDP-43 depletion from the nucleus, TDP-43 mislocalization into the cytoplasm, and the formation of insoluble TDP-43 aggregates.
The neurodegeneration brought about by pathological TDP-43 can be caused by a potential combination of both a loss of physiological function

Clinical significance of TDP-43 in AD

TDP-43 has been reported to influence the clinical fea-
tures of dementia, including cognitive deficits and
the likelihood of dementia. Josephs and coworkers
sought to determine the frequency of TDP-43 pathology
across AD subtypes and its effects on cognition [119].
They found that deposition of TDP-43 was frequent in
limbic predominant (67%) and typical AD subtypes
(59%), but less frequent in the hippocampal sparing sub-
type (21%) [119]. Although the frequency of TDP-43 de-
position in AD varies by pathological subtype, the
observed effects of TDP-43 on clinical features, such as
exacerbating cognitive decline, were consistent across
pathological subtypes [119]. Another study investigated
TDP-43, mixed pathologies, and clinical AD type de-
mentia in the Religious Orders Study and the Rush
Memory and Aging Project (ROSMAP) cohort with 946
old-age adults (89.3 + 6.5 vyears) [115]. TDP-43

pathology was present in 52% of the participants; 65% in
individuals with Alzheimer’s-type dementia and 44% in
cognitively normal individuals. Additionally, coexistence
of both TDP-43 and AD pathology was more common
in those with Alzheimer’s-type dementia (54%) than
those without dementia (25%) [115]. After using a logis-
tic regression model and accounting for age, sex, and
education, the investigators discovered that not only
mixed AD and TDP-43 pathology, but also TDP-43
pathology, alone, was associated with Alzheimer’s-type
dementia with an odds ratio of 6.73 and 1.51, respect-
ively [115]. Similarly, McAleese and coworkers investi-
gated the frequency of TDP-43 pathology in 119
individuals with autopsy-confirmed AD, dementia with
Lewy bodies (DLB), mixed AD/DLB, and non-demented
elderly controls [120]. TDP-43 pathology was present in
all groups but was the highest in AD (73.9%) and mixed
AD/DLB (52.6%) groups.
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Fig. 4 Distribution pattern of TDP-43 pathology in AD. (Upper panel) lllustration of TDP-43 stage in AD. An anterior coronal section depicts TDP-
43 pathology progression from the amygdala (Stage 1), into the subiculum and entorhinal cortex (Stage 2), and then leads into the
occipitotemporal cortex and dentate gyrus (Stage 3) of the hippocampus, followed by the insular cortex and the inferior temporal cortex (Stage
4). After progressing into the substantia nigra (Stage 5), the pathology reaches its final stage at the basal ganglia (putamen and globus pallidus)
and middle frontal cortex (Stage 6). (Lower panel) Immunohistochemistry with an anti-phosphorylated-TDP-43 antibody shows representative
images of TDP-43 pathology in different brain regions of each stage. Stage 1, amygdala; Stage 2, entorhinal cortex; Stage 3, dentate gyrus; Stage
4, inferior temporal gyrus; Stage 5, substantia nigra; Stage 6, middle frontal gyrus. Scale bar = 50 um

Overall, these results suggest that TDP-43 pathology is
common in AD, especially in the limbic predominant sub-
type. These results also suggest TDP-43 pathology is a risk
factor for developing dementia of the Alzheimer type in-
dependent of pathological subtypes, and TDP-43 path-
ology increases the rate of hippocampal atrophy in AD.

Progression pattern of TDP-43 pathology in AD
Interestingly, TDP-43 presenting as a secondary comor-
bid pathology in AD follows its own distinct pathological
distribution pattern compared to that of ALS and FTLD.
Josephs et al proposed that the progression of TDP-43
pathology in AD occurs in six stages, with stage 1 being
characterized by TDP-43 pathology present within the
amygdala (Fig 4) [117]. Progression into the entorhinal
cortex and subiculum of the hippocampus defines stage
2, while stage 3 involves the hippocampal dentate gyrus
and occipitotemporal cortex. In a subset of cases, the
hippocampus has neuronal loss and gliosis consistent
with hippocampal sclerosis [118, 123], but in other cases
TDP-43 pathology is associated with Alzheimer type le-
sions, in particular neurofibrillary tangles [123]. The
phenomenon of TDP-43 colocalization in neurons with
neurofibrillary tangles has been termed Type B [131], to
distinguish it from genuine NCI in Type B cellular path-
ology. As the pathology progresses into stage 4, the insu-
lar cortex, ventral striatum, basal forebrain, and inferior
temporal cortex become affected. In stage 5, TDP-43
pathology now involves the brainstem nuclei, including
the substantia nigra, inferior olivary nucleus, and mid-
brain tectum. The final stage, stage 6, is associated with
involvement of basal ganglia and middle frontal cortex
[117]. The TDP-43 stage was not affected by the age at
onset, nor the time from onset to death in these AD pa-
tients [117]. This staging scheme is supported by assess-
ment of clinical behavior, pathological characteristics,
neuroimaging, and genetics; however, the underlying
mechanisms driving distribution of TDP-43 in AD is
unclear.

TDP-43 and AB

In vitro and in vivo data have indicated that pathologic
processes leading to AD and those leading to TDP-43
aggregation may influence one another. One study found
that full length recombinant TDP-43 can form stable

and spherical oligomers that can be recognized and
bound by All, an anti-amyloid oligomer specific anti-
body [92]. TDP-43 oligomers found in AD and FTLD
brains [92, 127] are toxic to neurons both in vitro and
in vivo through mechanisms that include reducing the
DNA binding capacity of TDP-43, suggesting that
oligomerization of TDP-43 may lead to gain of toxic
function, as well as loss of physiological function [92].
The investigators also noted that soluble Ap is converted
to AP oligomers in the presence of TDP-43 oligomers
due to their ability to cross-seed [92, 132]. This suggests
that TDP-43 and A have structurally similar domains
that could contribute to the formation of AB-TDP-43
complexes. The frequent detection of TDP-43 positive
inclusion bodies in AD could be due in part to this po-
tential cross-seeding capacity of Ap with TDP-43 [132].
Interestingly, full length TDP-43, as well as truncated N-
terminal and C-terminal variants, were found to reduce
Ap fibrillization in a dose-dependent manner at oligo-
meric and other pre-fibril stages [92, 125]. Analogous to
the most significant deficits seen in humans with AD
and TDP-43 pathologies, mice with recombinant TDP-
43 oligomers injected into the hippocampus had exacer-
bation of neuroinflammation and memory deficits [125].

A study investigating the relationship between TDP-43
and AD found that late stage AD patients have increased
pathological cortical TDP-43 [122], which is consistent
with the finding that TDP-43 pathology is associated
with severe AD pathology [129]. Similar to late-stage
AD, the investigators also noted an increase in TDP-43
pathology after AP (1-42) expressing lentiviral injections
into the cortices of rats, as well as co-localization of
intracellular AP with TDP-43, and association between
phospho-TDP-43 and AB [122]. These data suggest a
direct relationship between pathological TDP-43 and ex-
pression of Af in cells [122].

Another study revealed that the overexpression of
TDP-43 in the cortex and hippocampus of an APP/PS1
mouse model (carrying mutant APP and PSENI
genes) resulted in a decrease in AP plaque burden [124].
In this TDP-43 overexpression model there was also in-
creased formation of TDP-43 oligomers [124]. In
addition, there were increased levels of the amyloid pre-
cursor protein (APP) in the lysosomes, which might be
the explanation for reduced AB plaques rather than
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inhibition of amyloid fibrilization by direct interaction
with AP and extracellular TDP-43.

In another model system, there was increased neuro-
degeneration in the hippocampus of an APP/PS1 mouse
model with conditional TDP-43 knockout in the fore-
brain [133], suggesting that TDP-43 depletion may con-
tribute to neurodegeneration. Perhaps loss of TDP-43
function due to pathological modifications and misloca-
lization in a background of AD pathology may function
in a similar way to TDP-43 depletion, possibly exacer-
bating neurodegeneration similar to results observed in
AD [116]. Interestingly, the APP/PS1 TDP-43 knockout
mice had a decrease in A burden but increased oligo-
meric AP levels [133], suggesting that both overexpres-
sion and depletion of TDP-43 result in similar AP
outcomes. Similarly, microglial-specific inducible condi-
tional TDP-43 knockout in an APP mouse line was
found to increase phagocytic activity of microglia, which
resulted in increased amyloid clearance and reduction in
AP plaque burden [134]. Additionally, microglial-specific
TDP-43 depletion induced synaptic loss, even in the ab-
sence of amyloid, which may contribute to downstream
neurodegeneration possibly due to synaptic pruning by
overactive microglia [134]. These data suggest that
microglial phagocytic activity, and thus AP clearance,
may be at least in part regulated through TDP-43.

TDP-43 and Tau

Cytoplasmic inclusions in FTLD are typically immunore-
active for either Tau or TDP-43, respectively, thus the
clarification of two subtypes FTLD-Tau and FTLD-TDP
[135]. However, there has been studies that investigated
the relationship between tau and TDP-43 outside the
context of FTLD. For example, an in vitro study revealed
that tau oligomer treatment increased nuclear levels of
both phosphorylated and non-phosphorylated TDP-43
monomers in a dose-dependent manner [127]. Addition-
ally, as the concentration of tau oligomers increased, the
levels of phosphorylated TDP-43 oligomers in the cyto-
plasm increased as well, resulting in accumulations of
phosphorylated TDP-43 oligomers that were also immu-
noreactive for tau oligomers [127], suggesting that the
presence of tau oligomers induces the mislocalization
and polymerization of TDP-43 species into oligomers
and aggregates, and that tau oligomers may be able to
cross-seed with TDP-43. Furthermore, TDP-43 oligo-
mers were found to co-localize with tau and A in AD
and FTLD post-mortem brains [127].

The previously discussed APP/PS1 mouse model with
TDP-43 overexpression was associated with increased
pathological tau, which suggests that TDP-43 could play
a role in neurofibrillary tangle development [124]. Fur-
thermore, phosphorylated tau was present within mouse
neuronal extensions in APP/PS1 transgenic mice with
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TDP-43 overexpression. In addition, colocalization of
TDP-43 and phosphorylated tau has been detected in
AD brains, with distinct tau and TDP-43 filaments
within the same neuron [123, 136]. These data suggest
that depending on the context, TDP-43 and tau may in-
fluence one another’s pathological progression; TDP-43
can promote pathological tau accumulation, or vice
versa. However, an inverse association between TDP-43
and tau within post-mortem AD brains was also re-
ported, possibly due to the negative regulation of tau
transcripts by TDP-43 [18]. Therefore, additional studies
are required to elucidate the relationship between TDP-
43 and tau in AD development.

TDP-43 and APOE in AD

Apolipoprotein E (apoE), a glycoprotein present within
the central nervous system and periphery, is an import-
ant lipid transporter, especially for cholesterol [137]. The
human APOE gene has three alleles: APOE2, APOES3,
and APOE4, with APOE2 being associated with the re-
duced risk for late-onset AD, while APOE4 is a major
risk factor for late-onset AD [137-139]. ApoE has been
well-known to influence AP pathology, as well as other
neurodegenerative disease pathologies, including «o-
synuclein, in an isoform-dependent manner [118, 140—
144]. Associations between APOE4 and TDP-43 path-
ology have also been reported [116, 118, 145]. A case
study suggested that apoE and TDP-43 can form com-
plexes based on co-immunoprecipitation data, and that
APOE genotype can affect the severity of the complex
burden with the APOE4/4 individual suffering from a
higher burden compared to APOE3/3 [146]. Using a co-
hort from Mayo Clinic’s brain bank, Josephs and co-
workers determined that pathologically confirmed AD
patients with TDP-43 co-pathology were also more likely
to carry the APOE4 allele when compared to TDP-43
negative AD cases [116]. Additionally, these individual’s
scores on multiple cognitive impairment tests were de-
creased and cognitive impairment was more likely to
present itself before death [116]. Similarly, another study
based upon the ROSMAP cohort has reported that the
stage and burden of TDP-43 pathology are positively
correlated with the number of APOE4 alleles, even after
controlling for amyloid, tau, and Lewy body pathologies
[118]. Wennberg and coworkers analyzed a cohort of
751 pathologically confirmed AD cases for TDP-43 sta-
tus, APOE genotype, tau neurofibrillary tangle stage, and
AP status and found a direct association between APOE4
and TDP-43; the association was mediated by AP and
tau [145]. Overall, these data suggest that APOE4 in-
creases TDP-43 burden and likely increases the risk of
TDP-43 pathology in AD by processes linked to Alzhei-
mer type pathology and also processes independent of
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AB, thus contributing to detrimental effects of APOE4
on cognition later in life.

TDP-43 pathology in aging and hippocampal sclerosis
(HS) of the elderly

Age-dependent demethylation of the TARDBP 3’ un-
translated region has been reported to increase TARDBP
mRNA expression in the motor cortex in ALS [147]. Be-
sides ALS, aging is considered a risk factor for develop-
ing TDP-43 pathology even in neurologically normal
individuals [148-150]. From 286 consecutive autopsy
brains, Uchino and coworkers reported that 40% of con-
trol elderly individuals (78.5 + 9.7 years) with minimal
senile plaques had TDP-43 pathology [151]. Addition-
ally, TDP-43-positive individuals were reported to be
significantly older than those without TDP-43 pathology
from a study investigating TDP-43 in the anterior tem-
poral pole cortex [152]. These data suggest that TDP-43
pathology in the anterior temporal pole cortex is an im-
portant early neocortical stage of TDP-43 progression in
aging and AD while extension of TDP-43 pathology to
the midfrontal cortex is a late stage associated with more
severe and global cognitive impairment [152]. Similarly,
a study exploring age-related interneuron degeneration
discovered that aged TDP-43 transgenic mice suffered
from a significantly higher amount of TDP-43 positive
inclusions than did non-transgenic aged mice as well as
worse degeneration [153].

Hippocampal sclerosis (HS) increases in frequency
with age and is a distinct process from AD, even though
they both are associated with an amnestic clinical syn-
drome [154]. About 10-25% of individuals over the age
of 85 are affected by HS-aging with the pathological fea-
ture of TDP-43 pathology in the hippocampus [150].
Neuronal loss in HS overlaps with that seen in epilepsy
and hypoxic-ischemia, but the latter are not associated
with TDP-43 pathology [155]. The discovery of TDP-43
pathology in HS of the elderly was the first evidence that
this was a unique disease process that is associated with
advanced age. Common genetic variants in GRN and
TMEMI06B are risk factors for FTLD [156, 157] and
subsequent studies have also shown that they are risk
factors for HS of the elderly [158, 159], linking this old
age pathology to a similar disease process associated
with FTLD. The GRN and TMEMI106B genetic associa-
tions have also been observed in HS in the setting to
Lewy body dementia, most of whom have at least some
co-existing Alzheimer type pathology [160].

Given the fact that HS can be associated with degen-
erative, toxic, and selective hippocampal neuronal loss
associated with anoxic-ischemic injury or epilepsy, the
term HS has fallen out of favor. An international group
of experts proposed a new name for TDP-43 pathology
in the elderly, often associated with HS, “limbic-
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predominant age-related TDP-43 encephalopathy”
(LATE) [149]. LATE neuropathological change (LATE-
NC) is the term to refer to the pathology to distinguish
it from the clinical syndrome, LATE, which remains to
be defined, but is clearly associated with at least an
amnestic syndrome. LATE-NC is characterized by TDP-
43 neuronal and glial inclusions, with or without neur-
onal loss. TDP-43 pathology in LATE is concentrated in
the limbic regions, including the amygdala, hippocam-
pus, and anterior cingulate gyrus. According to a simpli-
fied staging scheme of LATE-NC, TDP-43 pathology
initially forms in the amygdala (stage 1) and then ex-
tends to the hippocampus (stage 2) and the middle
frontal gyrus (stage 3). Although it remains controversial
[161], LATE can be differentiated from FTLD-TDP
based on its epidemiology and severity of cortical TDP-
43 pathology. LATE usually affects much older adults
(present in 20-50% of individuals past 80 years old) than
FTLD-TDP [149, 162]. TDP-43 pathology in the middle
frontal gyrus in LATE-NC stage 3 is less severe than that
of FTLD-TDP [163]. LATE is commonly found with co-
pathologies including AB and tau [149]. Indeed, AD and
LATE are often comorbid processes. LATE has been
linked with robust disease-specific cognitive impairment,
and it is one of the common age-related diseases that
can imitate AD [149]. In the ROSMAP cohort, 15-20
percent of clinically diagnosed AD dementia patients at
80 years of age or older are associated with LATE [149].

TDP-43 and other neurodegenerative disorders

TDP-43 has been reported as a co-pathology in other
neurodegenerative disorders besides AD, including Hun-
tington’s disease, progressive supranuclear palsy (PSP),
corticobasal degeneration (CBD), argyrophilic grain dis-
ease, DLB, and multiple system atrophy (MSA) [10, 120,
126, 128, 164—170]. In most cases, phosphorylated or
truncated TDP-43 is a component of the cytoplasmic in-
clusions in these disorders, occasionally co-localizing
with the primary pathology [120, 125-127]. The preva-
lence of the co-pathology depends on the primary path-
ology. For instance, over 57% of AD patients or 45% of
CBD patients had TDP-43 pathology, while less than 6%
of PSP or MSA patients had TDP-43 pathology [10, 116,
164, 168, 169].

An in vivo study using transgenic mice expressing hu-
man TDP-43 mutants found that administration of an
autophagy-inducing drug could ameliorate TDP-43
pathology in the brain and spinal cord of the transgenic
animals [171]. Given the fact that tau and a-synuclein
pathologies also implicate disruption of autophagic path-
ways [172-174], developing active pharmacological
agents to enhance autophagy flux may alleviate intracel-
lular aggregation-prone proteins. Due to the ubiquitous
nature of TDP-43 expression, it may not be a viable
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therapeutic approach to target TDP-43 in a generalized
manner; however, strategies to modify the TDP-43 tox-
icity and to reduce TDP-43 aggregation may not only
benefit FTLD and ALS patients [175], but also be rele-
vant to more common age-related neurodegenerative
disorders such as AD, Lewy body dementia, and LATE.

Conclusions

Significant efforts in the past decade have been placed in
finding and testing new treatment methods for AD in
hopes to prevent or cure this devastating disease. TDP-
43 pathology, commonly found in AD brains, has been
shown to influence AD pathology and neurodegenera-
tion, whether it be decreasing senile plaque load through
overexpression, or increasing amyloid oligomers and
synapse loss through depletion. It also shares an import-
ant genetic risk factor with AD, the APOE4 gene. The
mere presence of TDP-43 pathology increases the likeli-
hood of developing Alzheimer-type dementia. These
findings provide strong evidence for TDP-43 being an
integral part of multiple neurodegenerative conditions,
emphasizing the need to better understand the mecha-
nisms of TDP-43 pathogenesis in AD and other age-
related disorders.
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