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Abstract

Amyloid-P peptide (AB) accumulation in the brain is an early, toxic event in the pathogenesis of
Alzheimer's disease (AD). AP is produced by proteolytic processing of a transmembrane protein,
[B-amyloid precursor protein (APP), by B- and y-secretases. Mounting evidence has demonstrated
that alterations in APP cellular trafficking and localization directly impact its processing to AP.
Recent studies have shown that members of the low-density lipoprotein receptor family, including
LRP, LRPIB, SorLA/LRI 1, and apolipoprotein E (apoE) receptor 2, interact with APP and regulate
its endocytic trafficking. Another common feature of these receptors is their ability to bind apoE,
which exists in three isoforms in humans and the presence of the €4 allele represents a genetic risk
factor for AD. In this review, we summarize the current understanding of the function of these
apoE receptors with a focus on their role in APP trafficking and processing. Knowledge of the
interactions between these distinct low-density lipoprotein receptor family members and APP may
ultimately influence future therapies for AD.

Background

Alzheimer's disease (AD) is the most common cause of
dementia among people age 65 and older. A diagnosis of
AD is confirmed upon autopsy by the presence of charac-
teristic lesions in specific regions of the brain, notably the
hippocampus, amygdala, and association cortices of the
frontal, temporal and parietal lobe of the cortex [1]. Fit-
tingly, these affected regions are responsible for memory,
emotion and decision making abilities, which are
impaired in AD dementia. Lesions found in AD are depos-
its of amyloid plaques in the cerebrovasculature and
parenchyma of the brain and intracellular neurofibrillary
tangles. Amyloid plaques are either dense/fibrillar or dif-
fuse in nature; fibrillar plaques are surrounded by dys-
trophic neurites, activated microglia, and reactive

astrocytes, while diffuse plaques lack fibrils and are asso-
ciated with few or no dystrophic neurites or altered glia.

A major component of the amyloid plaques found in AD
is the ~4 kDa amyloid-f peptide (AB) [2], which is a cleav-
age product of the f-amyloid precursor protein (APP) [3].
AP ranges in size from 37 to 43 amino acids; however,
AB42(43) may act as a pathogenic seed for fibrillar plaque
formation since it is found in insoluble cores of fibrillar
and diffuse plaques [4]. One current hypothesis known as
the "amyloid hypothesis" postulates that increased AP
production or reduced AP metabolism results in the for-
mation of aggregated AP deposits leading to AD dementia
(for review see [5]). In support of this idea, in vitro studies
have demonstrated that AB42 aggregates and forms fibrils
more rapidly and is more neurotoxic than AB40 [6-8]. In
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vivo, studies in mice demonstrate that expression of only
human AB42 not AB40 results in overt amyloid pathology
indicating a requirement for AB42 in AP plaque deposi-
tion and AD pathogenesis [9]. It is possible that aggrega-
tion of AP into fibrils is not the principal cause of AD
dementia. Recent studies have also associated non-fibril-
lar assemblies of A with neuronal injury, synaptic loss
and dementia associated with AD. These AP assemblies,
including soluble AP oligomers and intraneuronal A
deposits, have been hypothesized to act as an early, causal
factor in the pathogenesis AD [1,10].

Genetic studies have confirmed that the processing of APP
to AP is important for AD pathogenesis. Mapping of genes
that segregate within families that develop early onset AD
dementia (<65 years of age) led to the identification of a
mutation in the APP gene on chromosome 21 [11].
Twenty-five separate pathogenic mutations within the
APP gene have been described in familial cases of AD [12].
Several of these mutations increase APP processing to Ap.
Furthermore, persons affected by Down's syndrome (tri-
somy-21), who have three copies of chromosome 21 and
therefore the APP gene, inevitably develop AD. Individu-
als who have Down's syndrome but lack the region of
chromosome 21 containing the APP gene do not develop
AD [13]. Together, these findings imply that a gain-of-
function mechanism for APP is an important factor in the
development of AD. Although genetic mutations in APP,
have enhanced our understanding of the biology of AD,
they only account for <1% of known AD cases [12]. For
this reason, it is of interest to study proteins that interact
with APP and modulate its processing to Af.

APP biology and processing

The APP gene is alternatively spliced to produce three
major isoforms of 695, 751, and 770 amino acids in
length. The two longer APP isoforms, APP751 and
APP770, both contain a 56 amino acid Kunitz Protease
Inhibitor (KPI) homology domain within their extracellu-
lar regions. APP is ubiquitously expressed throughout the
body, but APP695, which lacks the KPI domain, is the pre-
dominant form found in neurons [14,15], and may play a
role in neurite outgrowth and axonal sprouting (for
review see [16]). Targeted deletion of the APP gene in
mice produces no apparent phenotype, suggesting that
other members of the APP family, such as amyloid precur-
sor like proteins-1 (APLP1) and 2 (APLP2), can compen-
sate for its function [17]. Triple knockout mice lacking
APP, APLP1 and APLP2 die shortly after birth and have
cranial abnormalities or cortical dysplasia, suggesting an
essential function of this gene family in neuronal migra-
tion and brain development [18]. APP and APLP2 may
have functional redundancy in development since a dou-
ble knockout mouse of both genes displays a post-natal
lethal phenotype while a double knockout mouse of APP
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and APLP1 is viable [19]. APP, however, is the only mem-
ber of the family to contain the AP region and produce the
AD-associated AP peptide.

During its trafficking to the cell surface and in the endo-
cytic pathway, APP can undergo proteolysis by secretase
enzymes to release either the AP peptide (amyloidogenic
pathway) or a shorter, non-toxic peptide known as sAPP
(non-amyloidogenic pathway) [20] (Fig. 1). In the amy-
loidogenic pathway, APP is first cleaved at a -secretase
site by the enzyme BACE (f-site APP cleaving enzyme),
which releases a soluble B-cleaved APP fragment (sAPP)
and leaves a 99 amino acid C-terminal fragment (CTF)
known as C99 attached to the membrane. C99 is subse-
quently cleaved by a fy-secretase/presenilin complex
within its intramembrane region to release the AP peptide
[1]. In the non-amyloidogenic pathway, APP is processed
by an o-secretase that clips within the AP region, which
results in the release of a soluble ~110-120 kDa o.-cleaved
APP fragment (sAPPa). This pathway also releases a CTF
that is 83 amino acids in length known as C83. C83 can
also be cleaved by 7y-secretase to release p3. In both the
amyloidogenic and non-amyloidogenic pathway, the -
secretase cleavage of APP can also release an APP intracel-
lular domain fragment (AICD). The processing of APP to
these separate components may have important conse-
quences in both diseased and normal physiology (for
review see [21]). SAPP, which contains a KPI domain, has
been identified as the serine protease inhibitor, protease
nexin II (PNII), which inhibits the serine protease factor
Xla in the blood coagulation cascade [22,23]. In addition,
the C-terminal cleavage products of APP may activate gene
transcription in concert with other proteins such as FE65
[24].

Endocytic trafficking of APP

The presence of APP and APP cleavage products in clath-
rin-coated vesicles first suggested that the amyloidogenic
processing of APP could occur in the endocytic pathway
[25]. In 1994, Koo and Squazzo showed that cell surface
radiolabeled APP releases AP, and that endocytosis of APP
is also necessary for AB production. Inhibiting endocyto-
sis of cell surface APP by potassium depletion, which dis-
rupts the formation of clathrin lattices, or by C-terminal
deletions of the APP tail, which removes important inter-
nalization motifs, leads to a decrease in Af production
along with an increase in cell surface APP and sAPPo
secretion [26].

The cytoplasmic tail of APP contains two motifs, YENPTY
and YTSI, which are similar to the tyrosine-based NPXY
and YXX@ (where X can be any amino acid and @ is any
amino acid with a bulky hydrophobic group) consensus
endocytic motifs found in other well-known endocytic
receptors such as the low-density lipoprotein and epider-

Page 2 of 13

(page number not for citation purposes)



Molecular Neurodegeneration 2006, 1:8

http://www.molecularneurodegeneration.com/content/1/1/8

Amyloid precursor protein (APP) ™
118 289 671 1! 770
NH, | BT COOH
SP KPI AB!

Non-amyloidogenic

a-secretase r y-secretase
; 711 or 713 770

18
. l- [
SAPP, p3  AICD
Amyloidogenic
B-secretase -secretase
18 61 rl or 713
. | =
SAPP, AB  AICD

Figure |

Schematic representation of APP processing. APP is a type | transmembrane protein that can undergo two separate
proteolytic pathways. In the non-amyloidogenic pathway, APP is processed by an a-secretase that clips within the Af region
(thus precluding its formation), resulting in the release of a soluble ~| [0—-120 kDa N-terminal APP fragment (sAPPq). This
pathway also releases a CTF that is 83 amino acids in length (C83). C83 can also be cleaved by a y-secretase to release a small,
non-toxic 3 kDa fragment known as p3 and a YCTF known as APP intracellular domain (AICD). In the amyloidogenic pathway,
APP is cleaved first by 3-secretase releasing a SAPPJ fragment and leaving a 99 amino acid CTF attached to the membrane
(C99). C99 is subsequently cleaved by a y-secretase, within its intramembrane region to release the A peptide and AICD. SP,

Signal Peptide; KPI, Kunitz-type Proteinase Inhibitor domain.

mal growth factor receptors [27]. Fusing the APP tail to the
ectodomain of the transferrin receptor resulted in a func-
tional endocytic receptor [28]. However, the endocytosis
rate mediated by the APP tail is relatively slow at ~6%/
minute [29]. Using metabolic labeling followed by cell
surface biotinylation, Lai et al. (1995) demonstrated that
deletion of the YENPTY motif in full length APP both
decreased endocytosis and increased sAPPo. secretion.
Using a radioiodinated monoclonal antibody against APP
to monitor its trafficking, it was also shown that deletion
of the entire APP tail increased APP retention at the cell
surface and sAPPo production by 2.5-fold when com-
pared to wild-type APP [30]. Further mutational analyses
indicated that the dominant endocytosis motif within the
APP tail was the tetrapeptide YENP [31].

These studies establish a tight correlation between APP
endocytosis and AP secretion. Substantial research efforts
have examined the localization of the secretases involved
in APP processing. The recent identification of the endo-

somally localized B-secretase, BACE, further supports the
idea that AP is formed in the endocytic pathway. BACE
localizes to the Golgi and endosomes and has optimal
activity at the acidic pH found within endosomal com-
partments [32]. Components of the y-secretase complex
have been localized to the endoplasmic reticulum (ER),
lysosomes and cell surface [33,34], whereas o-secretase
activity is found primarily at the cell surface [35]. Since the
secretases responsible for APP proteolysis have optimal
enzymatic activity or distribution within specific cellular
compartments, shifting APP to these compartments leads
to an increased probability that APP will be cleaved by
that secretase.

When cell surface APP is internalized to the endosomes, it
is cleaved at the P-secretase site by BACE, and then
returned to the cell surface or trafficked to the lysosome
where it is cleaved by y-secretase to produce AB. On the
other hand, if APP accumulates at the cell surface it has a
greater availability for o-secretase interaction and is
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cleaved to sAPPa via the non-amyloidogenic pathway.
Although a large amount of work has been devoted to the
study of APP trafficking within the endocytic pathway,
there is only emerging evidence that APP-interacting
receptors can affect its trafficking and processing. This
review focuses on several members of the low density
lipoprotein receptor family that have been shown to inter-
act and influence the cellular localization and processing
of APP to AP.

The low density lipoprotein (LDL) receptor
family

The LDL receptor family consists of a large class of cell sur-
face receptors of diverse function. The family currently
consists of the LDL receptor, LDL receptor-related protein
(LRP, also known as LRP1), LDL receptor-related protein
1B (LRP1B), megalin/LRP2, the very low density lipopro-
tein receptor (VLDLR), apoE receptor 2 (apoER2), LRP4/
MEGF7, LRP5, LRP6, and sorting protein-related receptor
containing LDLR class A repeats (sorLA) or LR11 (Fig. 2).
Although members of the LDL receptor family perform a
variety of functions from cholesterol metabolism to cellu-
lar signaling, they share several features and structural
motifs: 1) ligand-binding complement-type cysteine-rich
repeats, 2) epidermal growth factor (EGF) receptor-like
repeats, 3) YWTD [-propeller domains, 4) one or more
endocytic motifs within their cytoplasmic domains such
as NPXY, YXXO or di-leucine motifs [36], and 5) binding
of apolipoprotein E (apoE), a protein involved in choles-
terol transport. Interestingly, apoE exists in three isoforms
(E2, E3, and E4) in humans, and the presence of an &4
allele represents a genetic risk factor for late-onset AD
[37].

LRP

LRP is a multi-functional endocytic receptor that is highly
expressed in the brain. At ~600 kDa in size, LRP is one of
the largest receptors of the LDL receptor family. LRP is
synthesized as a single polypeptide precursor and is
cleaved by furin in the trans-Golgi network to produce a
non-covalently associated heterodimer: a heavy chain
(~515 kDa) containing the extracellular and ligand bind-
ing domains of LRP and a light chain (85 kDa) containing
the transmembrane domain and cytoplasmic tail of LRP.
The 515 kDa subunit contains four putative ligand bind-
ing domains (designated by Roman numerals [, II, III, and
IV) [38] consisting of 2, 8, 10 and 11 cysteine-rich com-
plement-type repeats, respectively. Each of these clusters is
interspersed with EGF precursor homology repeats and
YWTD repeats that form B-propeller modules (Fig. 2).

Two approaches have been successfully employed to iden-
tify which cluster of ligand binding repeats within LRP is
responsible for binding to ligands. In one approach, LRP
minireceptors were generated by fusing various clusters of
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ligand-binding repeats to the LRP light-chain and measur-
ing their ability to mediate ligand internalization [39,40].
Another approach has been the creation of soluble recom-
binant receptor fragments that can be individually tested
for ligand binding [41]. These studies have also been
aided by the discovery of the ~39 kDa receptor-associated
protein (RAP) that has high affinity for LRP (for review see
[42]). RAP is normally an ER resident protein that serves
as a molecular chaperone for members of the LDL recep-
tor family to prevent premature binding of ligands and aid
in their proper folding. Purified RAP is an excellent phar-
macological tool because its exogenous application was
found to universally antagonize binding of ligands to LRP
as well as other members of the LDL receptor family. The
majority of LRP ligands, including RAP, have been shown
to bind to domains II and IV with equal affinity. No lig-
and has been demonstrated to bind domain I and only
RAP and apoE were found to bind Domain III [40,43,44].
LRP was initially identified as a receptor for activated
alpha-2-macroglobulin (a2M) [45]. Since then, LRP has
been shown to bind and endocytose over 30 structurally
and functionally diverse ligands. The function of these lig-
ands can be divided into several classes, including lipo-
protein metabolism, proteinases, proteinase-inhibitor
complexes, blood coagulation factors, growth factors,
extracellular matrix proteins, chaperones, and bacteria/
viral proteins. Numerous ligands may bind LRP by inter-
actions with either a combination of repeats within a sin-
gle ligand-binding domain or several repeats from
separate ligand-binding domains [46].

The 100 amino acid cytoplasmic tail of LRP contains two
NPXY motifs, one YXX® motif, and two di-leucine motifs.
A unique feature of LRP is its rapid rate of endocytosis,
with half of the receptors at the cell surface able to inter-
nalize within 30 seconds (t;, < 0.5 min) [47]. Other
members of the LDL receptor family endocytose at much
slower rates, e.g., megalin has a t;), ~ 4.8 min and the
apoER2 hasat;, ~ 8.1 min [48]. Using site directed muta-
genesis, Li et al. (2000) defined the YXXL motif and distal
di-leucine repeat as the major endocytic motifs within the
LRP tail. Although the ability of LRP to rapidly endocytose
a wide variety of ligands suggests a primary function as a
cargo transporter, several studies have found that the LRP
cytoplasmic domain interacts with proteins involved in
cell signaling, axonal transport, and glutamate receptor
scaffolding. These adaptor proteins include disabled-1
(Dab1), FE65, JIP-1 and 2, and PSD-95 [49,50]. These
findings indicate that LRP may have dual roles as both a
signal transduction receptor and a major cargo transport
receptor. LRP may also function in synaptic plasticity and
memory via association with tissue-type plasminogen
activator (tPA) [51], by influencing calcium influx via
NMDA receptors [52], or interactions with ApoE and KPI-
containing APP in the dentate gyrus [53].
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Schematic representation of members of the LDLR family. Members of the LDLR family have diverse functions from
cholesterol metabolism, Reelin and Wnt signalling, to intracellular transport. Despite multiple functions, they share common
structural motifs, including ligand-binding repeats, epidermal growth factor (EGF) repeats, YWTD spacer domains, a single
transmembrane domain and a short cytoplasmic domain containing conserved endocytic motifs. FN, fibronectin.

LRP and Alzheimer's disease

Since LRP is a neuronal receptor for apoE, a well-known
AD risk factor, LRP was investigated for its significance in
AD pathology. From these studies, LRP has been linked to
AD in several ways. First, LRP mediates the clearance of AP
in vitro either by binding to AP itself or AR complexed to
apoE, activated a,M, or lactoferrin [54-57]. Second, LRP
and its ligands are found in amyloid plaques in AD brains
and also in fibrillar amyloid plaques in a mouse model of
AD [58-60]. Finally, several polymorphisms within the
LRP gene on chromosome 12 have been associated with
AD: a 5' tetranucleotide repeat, a single base pair change
within exon 3 (C766T), and a weakly protective polymor-
phism in exon 6 [61-63]. It must be stated however, that
a number of recent papers have discounted an association
between the 5' tetranucleotide repeat of LRP and AD [64-
66]. Conversely, the C—T change in exon 3 has been con-
firmed in additional studies and in distinct ethnic groups
[65,67-69]. Although this silent polymorphism does not
affect protein structure, an analysis of AD patients
revealed that carriers of the T allele had a later age of onset
than non-carriers. AD cases with C/T or T/T genotypes also
had significantly higher levels of cortical LRP compared to
carriers of the C/C genotype, indicating a possible protec-
tive effect of higher levels of LRP and/or the T allele [70].

Additional studies may be required as this polymorphism
has been criticized as being only weakly correlated with
AD [71]. Overall, these findings suggest that LRP could
play a role in the development of AD pathology.

Interaction between LRP and APP

Although it is possible that LRP plays a role in the clear-
ance of A, it also alters the metabolism of AP via extracel-
lular and intracellular interactions with the AP precursor,
APP. Several studies have indicated that APP processing to
AP is modified by LRP expression. In 1995, Kounnas et al.
reported that LRP binds and internalizes secreted sAPPo,
which contains a KPI domain. Soon after, it was demon-
strated that cell surface KPI-containing APP complexed
with epidermal growth factor binding protein (EGFBP) is
internalized by LRP [72]. This internalization of APP was
inhibited by the LRP antagonist, RAP, indicating that cell
surface and secreted APP are degraded by a mutual path-
way that requires LRP.

An intracellular interaction also exists between LRP and
non-KPI containing APP through the cytoplasmic adaptor
protein, FE65. FE65 contains a WW domain and two
phosphotyrosine binding domains (PTB1 and PTB2),
similar to the adaptor protein Shc. The PTB domains of
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FEG65 specifically bind wXNPXpY (where y is a hydropho-
bic residue and pY is phosphotyrosine) motifs within
receptor tails [73]. APP binding to FE65 is not dependent
on phosphorylation, but can be abolished by mutation of
the first tyrosine within the YENPTY motif of APP [74].
Pull down experiments demonstrated that the amino-ter-
minal PTB1 of FE65 binds to LRP and the carboxyl-termi-
nal PTB2 of FE65 binds APP [50], suggesting that FE65
could act as an adaptor to complex these two proteins. A
cytoplasmic interaction between APP and LRP, bridged by
FEG5, could further strengthen the association between
LRP and KPI-containing forms of APP and also account
for an association between non-KPI containing APP and
LRP. These interactions between APP and LRP at cell sur-
face and in the Golgi apparatus have been substantiated
with cell surface biotinylation, co-immunoprecipitation,
and fluorescence resonance energy transfer (FRET) exper-
iments in cells overexpressing APP, LRP and FE65 [75,76].

To determine if disrupting the interaction between LRP
and APP could influence the processing of APP to A,
Ulery et al. (2000) antagonized the extracellular interac-
tion between cell surface APP and LRP with RAP. Cells
expressing APP751 were incubated with RAP for five days.
Remarkably, long-term treatment of cells with RAP caused
an increase in cell surface APP and a decrease in AP pro-
duction. In the same study, co-transfection of APP and
LRP in LRP-deficient cells, led to a ~3-fold increase in AR
levels in the media compared to media from cells trans-
fected with APP alone. These data demonstrate that LRP
expression can influence APP processing to AP, possibly
via an extracellular interaction between LRP and APP.

In a study utilizing LRP+/- or LRP-/- mouse fibroblasts
expressing APP751, Pietzrik et al. (2002) demonstrated
that cells endogenously expressing LRP or transfected with
an LRP C-terminal fragment have increased AP levels and
decreased sAPPa. levels compared to LRP-null cells. These
studies indicate that the cytoplasmic domain of LRP alone
is sufficient for its effect on APP processing. In the same
study, it was demonstrated that cells expressing LRP have
a higher ratio of intracellular to cell surface APP compared
to LRP-null cells, suggesting that the internalization rate
of APP is enhanced with LRP expression. Interestingly,
expression of an LRP C-terminal fragment bearing a Y—>A
mutation within the distal NPXY motif did not decrease
sAPPa levels. Since this tyrosine is also important for LRP
endocytosis [47], it is possible that mutation of this resi-
due influenced the endocytosis of this LRP fragment,
which would also affect APP endocytosis and processing.
Studies in our laboratory found that mutations within this
distal NPXY motif of LRP as well as the leucine within the
YXXL endocytic motif increased cell surface levels of LRP
and also resulted in an accumulation cell surface APP
[77]. Interestingly, we found that only when both LRP and
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APP were overexpressed together that there was a net accu-
mulation of extracellular AB. When LRP alone was overex-
pressed, endogenous AP levels in the media were lower
likely due to the ability of LRP to bind and endocytose Af.

Ye et al. (2005) recently reported that application of
ApoE4 to cells expressing KPI-lacking APP increases APP
endocytosis and A levels [78]. This effect was abolished
when cells were co-incubated with RAP or when expres-
sion of LRP was reduced using small interference RNA.
These results suggest that the binding of ApoE to LRP
cause levels of AP to increase. Although this study pro-
vides an interesting link between the pathogenic allele of
ApoE, LRP, and APP endocytosis and processing, it is
unclear how the binding of ApoE4 to LRP influences APP
processing. Future studies should determine if ApoE bind-
ing to LRP alters LRP endocytosis, localization, or its abil-
ity to interact with APP. Since these studies were
performed with APP which lacks an extracellular interac-
tion with LRP, it is possible that ApoE4 binding would
enhance an intracellular interaction between LRP and
APP.

Our laboratory has also demonstrated a significant link
between LRP expression and A levels in vivo [79]. Expres-
sion of a functional LRP minireceptor in neurons of an
amyloid mouse model of AD was associated with an
increase in soluble AP levels and memory deficits in aged
mice. These changes in APP trafficking and processing
appear to be linked to the rapid rate of LRP endocytosis.
Altogether these findings indicate that interactions
between LRP and APP have the ability to modulate AB lev-
els.

Recent findings that LRP interacts with presenilin 1 and
BACE and is a substrate for y-secretase and B-secretase [80-
82] suggest that the alterations in APP processing by LRP
could be more complex than originally considered. LRP
may influence APP access to secretases through interac-
tions with the secretases themselves or by changing the
compartmentalization of APP. In the case of y-secretase
activity, LRP C-terminal fragments may compete with APP
as a substrate for cleavage [82]. In the case of B-secretase
activity, LRP may co-operatively aid interactions between
APP and BACE possibly in lipid raft domains [80,83]. The
recent generation of a mouse that selectively lacks LRP in
differentiated neurons may provide a useful model to fur-
ther analyze the affect of LRP on amyloid deposition [84].

LRPIB

LRP1B was first characterized in 2000 as a novel LDL
receptor family member with extensive homology to LRP
[85]. LRP1B shares 59% amino acid identity with LRP.
The overall structure of LRP1B is like LRP with similar
spacing of its 32 cysteine-rich ligand binding repeats into
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four clusters of putative ligand binding domains, eight
EGEF-precursor domains and two NPXY motifs within its
cytoplasmic tail. There are two major structural differ-
ences between LRP and LRP1B. LRP1B contains one addi-
tional ligand binding repeat within ligand binding
domain IV and also has a unique 33 amino acid sequence
within in its cytoplasmic tail [85,86] (See Fig. 2).

LRP1B was initially named LRP-deleted in tumors (LRP-
DIT) because in a study of non-small cell lung cancer cell
lines (NSCLC) the LRP1b gene was deleted or inactivated
in 40% of the cell lines [85]. Since then, inactivation of
the LRP1b gene has also been described in grade 3 (G3)
urothelial cancers [87] and esophageal squamous cell car-
cinomas [88]. Due to its loss of function in cancer cell
lines, it is hypothesized that LRP1B acts as a tumor sup-
pressor. Additionally, the expression pattern of LRP1B
suggests that it may have an important function in the
brain. Tissue expression analysis established that LRP1B
was expressed primarily in the brain, thyroid and salivary
gland [86] and in situ hybridization of tissue sections
determined that LRP1B mRNA expression in the brain was
highest in the dentate gyrus of the hippocampus and ven-
tral to the fourth ventricle [89].

In order to determine the trafficking and function of
LRP1B, our laboratory created a minireceptor consisting
of its fourth putative ligand binding domain, full trans-
membrane domain, and cytoplasmic tail [86]. This LRP1B
minireceptor, designated mLRP1B4, contains both of the
main structural differences between LRP and LR1B - an
extra ligand binding repeat and a cytoplasmic 33 amino
acid repeat. RAP binds both mLRP1B4 and the analogous
LRP minireceptor (mLRP4). Several other LRP ligands
also bind LRP1B, including complexes of urokinase plas-
minogen activator and plasminogen activator inhibitor
type-1 [86]. Utilizing !25I-labeled RAP, Liu et al. (2001)
measured the endocytosis rate of the LRP1B minireceptor.
LRP1B exhibits a much slower rate of endocytosis (t;, >
10 min) compared to LRP (t;, < 0.5 min) [86], which may
influence the cellular distribution and catabolism of lig-
ands [86,90].

Since LRP1B shares several ligands with LRP, we sought to
determine whether LRP1B could also interact with APP. If
the fast endocytosis rate of LRP is responsible for facilitat-
ing APP processing to AP [91,92], we hypothesized that an
interaction between APP and LRP1B, which has a much
slower rate of endocytosis, would lead to decreased AP
production. Using an LRP1B minireceptor, we found that
mLRP1B4 and APP form an immunoprecipitable complex
[93]. Furthermore, mLRP1B4 bound and facilitated the
degradation of a soluble isoform of APP containing a
Kunitz proteinase inhibitor (KPI) domain, but not soluble
APP lacking a KPI domain. A functional consequence of
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mLRP1B4 expression was a significant accumulation of
APP at the cell surface, which is likely related to the slow
endocytosis rate of LRP1B. More importantly, mLRP1B4
expressing cells that accumulated cell surface APP pro-
duced less AP and secreted more soluble APP. Consistent
with our finding of decreased AP levels, mLRP1B4 trans-
fected cells also had 40% less B-CTF to full-length APP
compared to empty vector transfected cells [93].

To determine whether -secretase processing was a limit-
ing factor to the production of AR in mLRP1B4 expressing
cells, we transiently transfected the B-cleaved APP frag-
ment, C99, into mLRP1B4 or empty vector transfected
cells. We still detected less AB in the media of mLRP1B4
cells compared to empty vector transfected cells, indicat-
ing that alterations of APP/C99 trafficking rather than
changes in [-secretase activity likely contributed to the
decreased levels of AP found in mLRP1B4 expressing cells
[93].

Using an antibody against the C-terminus of LRP1B, we
confirmed the expression LRP1B at the protein level in the
cortex, hippocampus, and cerebellum. Interestingly, we
detected the highest levels of LRP1B in the cerebellum
which is a region that is relatively unaffected in AD [93].
Future studies are still needed to address if LRP1B levels
are altered in human brain during normal and pathologi-
cal states. Since these studies suggest its expression may
decrease the extracellular release of AB, examination of the
regulation of LRP1B may have important applications to
AD therapy.

SorLA/LRI |

SorLA/LR11 was first described in 1996 as a ~250 kDa
receptor containing 11 putative ligand-binding comple-
ment-type repeats, 5 YWTD domains, and a vacuolar pro-
tein sorting 10 protein (vpslOp) domain, which is
homologous to a yeast receptor that transports proteins
between the late Golgi and a prevacuolar endosome-like
compartment [94]. Abundant mRNA expression of sorLA/
LR11 was found in human brain, spinal cord, and testis
[95]. The functions of SorLA/LR11 are not entirely known.
It shares structural and functional similarities with the
LDL receptor family in its ability to bind and internalize
RAP, ApoE, and lipoprotein lipase [95,96]; however, its
endocytosis rate is much slower than LRP. A chimeric
receptor of the cytoplasmic and transmembrane domains
of SorLA/LR11 endocytosed only 60% of bound ligand
after 15 min of incubation at 37°C [96]. Since SorLA/
LR11 is also considered to be part of the family of VPS10
domain containing receptors, its main role may be to
chaperone proteins as an intracellular sorting receptor.
SorLA/LR11 does not appear to play an important role in
development since SorLA/LR11 receptor-deficient mice
were viable and fertile [97,98].
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It was hypothesized that SorLA/LR11 expression may play
a preventative role in AD dementia because SorLA/LR11
transcripts were down-regulated in lymphoblasts from AD
patients. Also less SorLA/LR11 protein was found in neu-
rons from AD brains by immunocytochemistry and West-
ern blotting [99]. To determine the relevance of SorLA/
LR11 expression for AP processing, Andersen et al. (2005)
examined if SorLA/LR11 could interact with APP and
affect its cellular localization [97]. Using several methods,
including surface plasmon resonance analysis, immuno-
cytochemistry and co-immunoprecipitation, they showed
that SorLA/LR11 and APP interact. Further studies eluci-
dated that APP interacts with the extracellular cluster of
ligand-binding complement-type repeats in SorLA/LR11
similar to APP binding to the ligand-binding repeats in
LRP [77,100]. Unlike the interaction between LRP and
LRP1B, the KPI domain of APP was not necessary for an
extracellular interaction with SorLA/LR11 [100].

Expression of SorLA/LR11 shifted the localization of APP
in membrane fractions from the ER and plasma mem-
brane to the cis-Golgi and early endosomes [97]. In a neu-
ronal cell line, SorLA/LR11 expression also reduced
surface-localized APP and resulted in an accumulation of
mature, glycosylated APP [97]. These alterations in APP
trafficking were associated with a decrease in APP process-
ing to AP. In this study, APP was overexpressed with
SorLA/LR11 and levels of full-length APP appeared to be
stable. In another study in which APP was not overex-
pressed, SorLA/LR11 expression also reduced levels of
full-length endogenous APP although the authors note
that APP mRNA levels were unchanged [101]. Whether
APP was overexpressed or not, SorLA/LR11 expression sig-
nificantly decreased AP levels [97,101]. These findings
suggest that expression of SorLA/LR11 alters APP traffick-
ing through the secretory pathway, prevents APP traffick-
ing to the cell surface and may influence its turnover. In
agreement with the correlative studies in humans and in
vitro findings, ablation of SorLA/LR11 expression in mice
increased endogenous murine AP levels in the cerebral
cortex by ~30% compared to controls [97].

Although SorLA/LR11 expression altered the trafficking of
APP within intracellular compartments, it did not change
the endocytosis rate of APP as in the case of LRP [92,102].
Interestingly, SorLA/LR11 was found to interact with
BACE and appeared to compete with interactions between
APP and BACE in the Golgi apparatus [102]. Additionally,
it has been reported that SorLA/LR11 is also proteolyti-
cally processed by y-secretase [103] and proposed to act as
a competitive substrate with APP for y-secretase activity.
Altogether these current findings indicate that SorLA/
LR11 regulates APP trafficking into discrete intracellular
compartments and also influences its interactions with
secretases. Decreased levels of SorLA/LR11 as found in AD
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could result in increased interactions between APP and
BACE which would enhance its processing to C99. With
less SorLA/LR11 expression, C99 would have a greater
chance to be cleaved by y-secretase resulting in higher lev-
els of AB. Since SorLA/LR11 limits APP processing to A it
would be important to know how this receptor is regu-
lated. It has been previously demonstrated that the expres-
sion and proteolysis of SorLA/LR11 can be enhanced by
binding to its ligands, such as the neuropeptide head acti-
vator [104]. Other ligands of SorLA/LR11 e.g. ApoE, or
possible ligands e.g. sAPP, that are linked to AD pathogen-
esis are potential candidates and should be investigated.

ApoER2

ApoER2 is primarily known for its role in cortical develop-
ment and neuronal migration. Together with VLDLR,
ApoER2 acts as a co-receptor for Reelin, an important
extracellular signaling protein that regulates positioning
of cortical neurons [105]. Recently, several studies have
suggested that Reelin binding to ApoER2 may also influ-
ence synaptic function, learning, and memory in the adult
brain. ApoER2 knock-out mice have deficits in learning
and memory and hippocampal slice preparations from
these mice are deficient in long term potentiation (LTP), a
phenomenon associated with synaptic plasticity [106].
The reason for these deficits could be due to the latest
finding that ApoER2 interacts extracellularly with the
NR1, NR2A and NR2B subunits of NMDA receptors and
also associates intracellularly with PSD-95, proteins
which both have important roles in synaptic plasticity
[107,108]. Also, alternative splicing of the gene encoding
ApoER?2 results in a 59 amino acid cytoplasmic insert that
is selectively upregulated during periods of high activity in
mice. The presence of this insert in ApoER2 was necessary
for the propagation of LTP by Reelin and also in NMDA
receptor phosphorylation after Reelin binding [107].

In addition to its interactions with the NMDA receptor, it
has recently been found that ApoER2 can associate with
APP through F-spondin, a protein associated with the
extracellular matrix [109]. F-spondin expression alone
was previously shown to inhibit BACE-dependent APP
cleavage and decrease APP B-CTF levels [110]. An interac-
tion between APP and ApoER2 was demonstrated by co-
immunoprecipitation of lysates from primary neuronal
cultures and COS?7 cells. Incubation with F-spondin-con-
taining medium increased this interaction by over 100%,
suggesting an important role of F-spondin in the cluster-
ing of these proteins [109]. Interestingly concurrent
expression of APP, ApoER2 and F-spondin results in an
increase in cell surface levels of both APP and ApoER2.

The clustering of ApoER2 and APP with F-spondin alters
the processing of both of these cell surface proteins. With
increased cell surface levels of ApoER2 and APP, the
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authors found an increase in secreted ApoER2 and sAPPo.
and an increase in their CTFs [109]. ApoER2 expression
with F-spondin was also associated with reduced A and
B-CTF levels, indicating a decrease in APP processing by [3-
secretase. The ability of F-spondin and ApoER2 to
decrease APP processing by 3-secretase was inhibited by
preincubation of cells with RAP, indicating the extracellu-
lar domain of ApoER2 is important for F-spondin and
APP interactions [109]. It would be interesting to know if
other extracellular ApoER2 ligands, such as ApoE, could
also disrupt ApoER2 interactions with APP and alter its
influence on APP processing.

Utilizing a well known FE65-dependent APP luciferase
transactivation assay [24] in which luciferase transactiva-
tion is dependent on FE65 and 7y-secretase cleavage of
APP, it was found that application of soluble F-spondin
decreased luciferase transactivation [109]. This decrease in
luciferase transactivation by the APP fragment and the
accumulation of APP CTFs with ApoER2 expression sug-
gest that ApoER2 could also influence downstream tran-
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scriptional activity of APP. Future studies are needed to
address whether these processes could influence synaptic
activity and AD pathogenesis.

A novel finding is that like LRP, ApoER2 is proteolytically
processed by a metalloproteinase at the cell surface which
releases an extracellular soluble fragment, and subse-
quently by y-secretase to release an intracellular domain
[111]. Binding of ApoER?2 ligands, ApoE and a2M, as well
as F-spondin to ApoE influences ApoER2 proteolysis. Cur-
rently, the function of these processed fragments is
unknown. Subsequently, it will be essential to determine
if the proteolytic processing of ApoER2 could alter its
interactions with APP and NMDA receptors and influence
AP levels and/or synaptic activity.

Conclusion

Alterations in APP processing to favor AR production and
the accumulation of AB in the brain are key pathogenic
events in AD. A number of proteins, including several
members of the LDL receptor family, have been found to

O
Cell surface o
A
Recycling M Secretory
Endosome RP Vesicles
w. LRP1B/®
ApoER2 k
Early
Endosome LR11®
| =
Golgi
H APP LRP
Lysosome
(degradation) - AB

Figure 3

Model of APP processing pathways mediated by LDL receptor family members. LRP endocytosis enhances APP
endocytosis and processing to AB. Due to its slow rate of endocytosis LRPIB retains APP at the cell surface and decreases its
processing to AP. ApoER2 enhances interactions between APP and F-spondin at the cell surface and also decreases its process-
ing to AP. SorLA/LRI | may shuttle APP to the Golgi and prevent its processing by B-secretase in the early endosome, thus

decreasing processing to Ap.
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interact with APP and regulate its trafficking and process-
ing. In this review, we have discussed several possible
mechanisms by which APP trafficking and processing are
regulated by LRP, LRP1B, SorLA/LR11 and ApoER2 (Fig.
3). For LRP and LRP1B, the expression and endocytosis of
these receptors may have opposing roles in their ability to
influence APP endocytosis and thus result in increased A
levels with LRP and decreased AP levels with LRP1B
expression. Expression of SorLA/LR11 alters trafficking of
APP to discrete intracellular compartments that result in a
decrease in AP levels. The uncovering of an interaction
between ApoER2, APP, and F-spondin reveals a complex
between the extracellular matrix and ApoER?2 at the cell
surface that can decrease APP processing to AP. Although
we have focused primarily on the roles of these LDL recep-
tor family members in APP, these receptors are also regu-
lated by alternative splicing and subject to proteolysis that
can influence intricate intracellular signaling pathways.
Future studies are needed to determine if interactions
between these receptors, APP and other ligands or co-
receptors can activate downstream signaling cascades that
may have ultimately effect the pathogenesis of AD. The
regulation of APP processing to AP is inherently complex;
nonetheless, the discovery that these LDL receptor family
members are able to affect its processing is an important
step to uncovering new therapies to reduce AP and its
associated dementia.
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