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Abstract

Background: Signal peptide peptidase (SPP) is an intramembrane cleaving protease identified by
its cleavage of several type Il membrane signal peptides. Conservation of intramembrane active site
residues demonstrates that SPP, SPP family members, and presenilins (PSs) make up a family of
intramembrane cleaving proteases. Because SPP appears to function without additional protein
cofactors, the study of SPP may provide structural insights into the mechanism of intramembrane
proteolysis by this biomedically important family of proteins. Previous studies have shown that SPP
isolated from cells appears to be a homodimer, but some evidence exists that in vitro SPP may be
active as a monomer. We have conducted additional experiments to determine if SPP exists as a
monomer or dimer in vivo.

Results: Fluorescence lifetime imaging microscopy (FLIM) can be is used to determine intra- or
intermolecular interactions by fluorescently labeling epitopes on one or two different molecules. If
the donor and acceptor fluorophores are less than |0 nm apart, the donor fluorophore lifetime
shortens proportionally to the distance between the fluorophores. In this study, we used two types
of fluorescence energy transfer (FRET) pairs; cyan fluorescent protein (CFP) with yellow
fluorescent protein (YFP) or Alexa 488 with Cy3 to differentially label the NH2- or COOH-termini
of SPP molecules. A cell based SPP activity assay was used to show that all tagged SPP proteins are
proteolytically active. Using FLIM we were able to show that the donor fluorophore lifetime of the
CFP tagged SPP construct in living cells significantly decreases when either a NH2- or COOH-
terminally YFP tagged SPP construct is co-transfected, indicating close proximity between two
different SPP molecules. These data were then confirmed in cell lines stably co-expressing V5- and
FLAG-tagged SPP constructs.

Conclusion: Our FLIM data strongly suggest dimer formation between two separate SPP proteins.
Although the tagged SPP constructs are expressed throughout the cell, SPP dimer detection by
FLIM is seen predominantly at or near the plasma membrane.
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Background

Signal peptide peptidase (SPP) is a member of a larger
group of intramembrane cleaving proteases (I-CLiP) that
play a variety of important roles in cell signaling [1] and
regulation [2], cell surveillance [3], intracellular commu-
nication [4], Alzheimer's disease [5], cancer [6,7], and
hepatitis C virus [8]. Within the I-CLiP family, presenilin
(PS) 1 and 2, SPP, SPPL3, and SPPL2b are putative aspar-
tyl proteases that cleave a variety of transmembrane sub-
strates [9-14]. PSs, SPP, and SPPLs all contain a conserved
active site motif of YD and GXGD in adjacent transmem-
brane domains [15-17]. Additionally, they contain a con-
served PAL motif near the COOH-terminus that has been
shown to be critical for activity [18]. Although the active
sites of PSs and SPP appear to be conserved, the proteins
differ in that PSs cleave type I membrane proteins and SPP
cleaves type Il membrane proteins [15,16,19-21]. This dif-
ference is thought to be due to the inverted active site
topologies of SPP and PS [11,22,23]. In addition to the
orientation difference between PS and SPP, PSs require
three additional proteins to function as y-secretase [24-
29], whereas SPP appears to be capable of functioning
alone [11,22,30].

SPP was originally identified as a ~45 kDa N-linked glyc-
oprotein using an inhibitor labeling approach [11]. Other
reports of SPP describe two bands, one at ~42 kDa, and
one at ~95 kDa [10,30]. Co-purification of two different
epitope tagged forms of SPP from a stably transfected cell
line expressing both tagged versions demonstrates that the
~95 kDa band is a homodimer [30], however, unequivo-
cal evidence of SPP dimerization in intact cells has been
lacking. There is evidence that PS1 may exists as a dimer
as well [31-36]. Yeast two-hybrid studies show that NH2
and COOH-terminal fragments of PS1 or intact PS1 can
self-associate [32,35]. Although minor, high molecular
weight forms of PS have been detected by native Western
blotting after denaturing SDS-PAGE [32,35]. PS1 NTF-
NTF and CTF-NTF dimers were detected following labe-
ling with a transition state analog y-secretase inhibitor
[33]. Finally, we have shown that PS1 forms dimers using
both co-immunoprecipitation and fluorescent lifetime
imaging microscopy (FLIM) in intact cells [36].

Although the I-CLiP family members play a variety of
important roles in biology and disease processes, a pau-
city of structural information exists due to the complexity
of studying the multipass membrane proteins that make
up this family. To date, multipass membrane proteins
have proven refractory to many of the current methods
used for obtaining protein structures, thus little insight
into the in vivo nature of the active proteases exists. We set
out to show that the SPP homodimer exists in intact cells
using a fluorescence resonance energy transfer (FRET)
based technique, FLIM. Our data demonstrate that the
NH2-terminus of one SPP molecule is less than 10 nm
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apart from the NH2-terminus or COOH-terminus of
another SPP molecule, indicating dimer formation. The
SPP dimerization is demonstrated both in intact, living
cells using SPP fluorescent fusion protein constructs, and
in fixed intact cells using tagged SPP constructs. Both the
tagged SPP constructs and the fluorescent fusion protein
constructs used in the FLIM studies are active in a cell
based SPP reporter activity assay [22]. These data suggest
that the SPP homodimer observed on western blots at ~95
kDa is present in intact cells.

Results

Epitope tagged SPP constructs and CFP/YFP SPP fusion
constructs maintain SPP activity

To ensure that all constructs used for FRET measurements
and FLIM studies were active, a cell based SPP activity
assay was used to assess SPP activity. This assay utilizes a
substrate consisting of the NH2-terminus of the ATF6
transcription factor fused to a transmembrane domain
susceptible to SPP cleavage in vitro [12,22,37]. Cleavage
of the substrate releases soluble ATF6 from the mem-
brane, which then translocates to the nucleus and acti-
vates an ATF6 luciferase reporter construct. Using this
assay, we have previously shown that SPPNTFLAG and
SPPCTV5 are both active and that overexpression of each
gives a significant increase in SPP activity [22]. As shown
in Figure 1, all SPP CFP- and YFP-fusion protein were cat-
alytically active as well.
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CFP/YFP SPP fusion proteins are active in a cell
based SPP reporter assay. SPP fluorescent fusion expres-
sion plasmid or vector control was transfected into HEK
293T cells as described previously [19]. Activity is obtained
by measuring the firefly luciferase activity and dividing it by
the Renilla luciferase activity (transfection control). Activity
of each SPP fluorescent fusion protein is plotted as % of
endogenous activity. All four different SPP fluorescent fusion
protein constructs significantly increase SPP reporter assay
activity 5-8 fold above endogenous SPP activity. *p < 0.05
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FLIM demonstrates close proximity of two differentially
tagged SPP constructs

Confocal microscopy of epitope tagged SPP constructs sta-
bly transfected into HEK cells or SPP fluorescent fusion
proteins transiently transfected into CHO cells demon-
strates that SPP is uniformly distributed throughout the
cell with the exception of the nucleus (Figure 2A). Previ-
ously, SPP was shown to co-localize with the ER marker
BiP [38]. Although confocal microcopy shows equivalent
compartment localization of all epitope tagged SPP and
SPP fusion constructs employed in this study, this colocal-
ization does not necessarily imply that there are close
intermolecular interactions equally throughout the cell.

To asses the in vivo SPP association, a FLIM assay measur-
ing the proximity between two differentially tagged SPP
molecules was established. In this assay, the donor fluor-
ophore lifetime is measured, which varies based on the
surrounding microenvironment and is shortened in the
presence of a FRET acceptor fluorophore in the immediate
vicinity (<10 nm). This decrease in donor fluorophore
lifetime is proportional to the distance between the donor
and the acceptor fluorophores and can be visualized using
a pseudocolor scale. On this pseudocolor scale, blue pix-
els indicate non FRETing molecules with an unchanged
donor fluorophore lifetime and red pixels indicate FRET-
ing molecules with a shortened donor fluorophore life-
time (Figure 2B and 2C).

In the live cell FLIM analysis, first the donor fluorophore
(CFP) lifetime was determined in the absence of an accep-
tor fluorophore (~2200 psec lifetime) (Table 1). Once
SPP-YFP fusion protein constructs were cotransfected
together with the SPP-CFP constructs into cells, a signifi-
cant decrease in CFP lifetime was observed, strongly indi-
cating dimer formation between two different SPP
molecules. This decrease in donor fluorophore lifetime
was consistently observed independent from the fusion
site of CFP or YFP to the NH2 or COOH-terminus of SPP,
respectively (Table 1).

An HEK cell line coexpressing both COOH-terminal V5
tagged SPP (SPP.;V5) and a NH2-terminal FLAG tagged
SPP (SPP\rFLAG) was previously generated and used to
isolate an in vitro dimer of SPP [30]. In these experiments,
a cell line expressing only SPP;V5, which was tagged with
Alexa 488 as a donor fluorophore, was used as a negative
control. Alexa 488 lifetime was ~2500 psec. (Table 2). In
the SPPFLAG/SPP;V5 co-expressing cell line a signifi-
cant decrease in donor fluorophore lifetime was observed
relative to the negative control (~2200 psec lifetime)
(Table 2), again indicating close proximity between two
different SPP molecules. Although SPP is present through-
out most of the cell, the majority of SPP dimers form at or
near the plasma membrane, as the most pronounced
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decrease in donor fluorophore lifetime is detected in this
region (red pixels) (Figure 2B).

Discussion

Under mild lysis conditions, SDS-PAGE, and Western
blotting SPP is primarily detected as a ~95 kDa
homodimer [30]. The SDS-stable homodimer is dissocia-
ble to a monomer by heating in the presence of SDS and
reductant [30]. In addition, we have shown that a NH2-
terminally FLAG epitope tagged SPP co-purifies with a
COOH-terminally V5 his epitope tagged SPP construct
[30]. These biochemical studies suggest that SPP is likely
to exist as a dimer in vivo. However, in vitro studies dem-
onstrate that detergent solubilized monomeric SPP is
capable of cleaving exogenous synthetic peptide sub-
strates [39]. To determine if the SPP dimer is present in
intact cells, a FLIM assay was established to measure the
proximity between two different SPP molecules in live
and fixed cells. FLIM has been described as a novel tech-
nique for the analysis of protein proximity [40,41] and
was used to show that PS1 interacts with amyloid precur-
sor protein and low density receptor related protein in the
same compartment making one a competitive inhibitor of
the other [42]. Association of two SPP constructs was
shown by the fact that the donor fluorophore lifetime of
a CFP or Alexa 488 labeled SPP construct significantly
decreases once an acceptor fluorophore of an YFP or Cy3
labeled SPP construct is present in the cell, indicating
close proximity of two different SPP molecules. SPP dimer
formation was seen between two differentially labeled
NH2-termini and two differentially labeled COOH-ter-
mini with CFP- and YFP-fusion constructs in live cells.
Dimer formation was also seen between the NH2-termi-
nus of one SPP molecule and the COOH-terminus of
another SPP molecule using both fusion proteins and
epitope tags (Table 1 and 2). These data indicate that the
epitope tags of two differentially tagged SPP constructs are
less than 10 nm apart.

Both confocal (Figure 2A) and intensity images (Figure
2B) show that the tagged SPP constructs are expressed
throughout the cell, excluding the nucleus. FLIM results
provide strong evidence for a close association of two SPP
molecules at or near the plasma membrane. Based on pre-
vious work it is generally accepted that SPP is predomi-
nantly localized to the endoplasmic reticulum (ER)
[14,23,38,43-46]. As known substrates of SPP are also
found in the ER, it is hypothesized that SPP functions pro-
teolytically within the ER [8,43,47,48]. SPP contains a
putative COOH-terminal KKXX ER retention signal that
does not appear to always retain SPP in the ER and is also
not required for activity [22,30,44]. In fact, epitope tags
placed after the KKXX ER retention signal do not to effect
dimerization or activity [22,30,44]. Not all naturally
occurring SPP constructs are confined to the ER [45].
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Figure 2

FLIM demonstrates that tagged SPP constructs form dimers in intact cells. a). Confocal microscopy images of
Alexa 488 labeled SPP~;V5 and Cy3 labeled SPP\:FLAG in stably transfected HEK cells demonstrate the cellular distribution of
SPP. b). FLIM was then used to monitor the proximity of Alexa 488 labeled SPP~;V5 and Cy3 labeled SPP\FLAG molecules.
Intensity images (A,C) again show the immunostaining of Alexa 488 labeled SPP~;V5 (donor fluorophore). The corresponding
FLIM images provide the visualization of the degree of donor fluorophore lifetime shortening on a pseudocolor scale (B,D). B)
Alexa 488 lifetime distribution in the absence of an acceptor fluorophore (negative control). D) The red pixels represent
shortening of the donor fluorophore lifetime indicating that two SPP molecules form a dimer and come into closest proximity
at the periphery of the cell. ¢) Confocal microscopy images of cells stably expressing SPP~;V5 were labeled by goat anti-V5
Alexa 488 and Cy3 anti-goat IgG and demonstrate that the two fluorophores are in close proximity of one another (positive
control). A) The intensity image of SPP;V5 Alexa 488 immunoreactivity. B) The pseudocolored FLIM image shows shortened
Alexa 488 lifetime (~1300 psec, red pixels) ubiquitously distributed throughout the cell.
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Table I: FLIM assay detects SPP dimer formation of fusion proteins.
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Donor (CFP) Acceptor (YFP)

CFP lifetime (mean % st.err, psec)

P value (Compared to CFP donor only)

NH2-terminus (n = 26) empty vector 2267 + 60

NH2-terminus (n = 22) NH2-terminus 1757 £ 125
COOH-terminus (n = 20) COOH-terminus 1494 + 145
NH2-terminus (n = 6) COOH-terminus 1526 £ 210

<0.001
<0.001
<0.001

SPP dimer formation between all combinations of fusion protein was demonstrated by significant shortening of donor lifetime. CHO cells co-
transfected with different combinations of NH2- or COOH-labeled SPP fusion protein constructs. All CFP-SPP donor lifetimes were significantly
shortened in the presence of another YFP-SPP molecule. ANOVA was performed using a Dunnet's post-hoc t-test.

Recently, a splice variant of SPP (SPPB) was shown to be
located primarily at the plasma membrane [45]. Our bio-
chemical data would suggest that the majority of SPP
exists in a dimeric form and the FLIM data provide evi-
dence for a closely associated homodimer at or near the
plasma membrane, but not in the ER. Whether this repre-
sents a difference in the SPP association in various subcel-
lular locations or a limitation of these techniques is not
clear at the present time.

All constructs used in these experiments are active in cell
based SPP reporter assays (Figure 1). We see no difference
between COOH-terminal, NH2-terminal, or untagged
SPP with regard to their ability to cleave a cell based sub-
strate or form a dimer (Figure 1) [22,30]. Although our
biochemical studies suggest that SPP exists primarily as a
dimer, the FLIM data support this finding at or neat the
plasma membrane. None of these studies provide insight
into whether SPP functions as a dimer or monomer or
where activity is localized. We believe that this issue will
take some time to resolve. Indeed, it took some time to
resolve the spatial activity paradox observed with preseni-
lins where the majority of presenilin is localized in the ER,
whereas y-secretase activity largely resides in other cellular
compartments (late trans-golgi, plasma membrane, endo-
somes) [49]. Thus it is possible that a relatively small SPP
pool contributes to the majority of the activity observed.

SPP is a multipass membrane protein containing seven
transmembrane domains with the NH2-terminus in the

lumen (extracellular) and the COOH-terminus in the
cytosol [15,23]. We interpret the FRET experiment to
show interactions between two closely associated mole-
cules even though the fluorophores are on opposite ends
of each molecule. While detecting FRET across a mem-
brane is not always possible due to the distances involved,
it can be accomplished if there are favorable alignments
[50].

Though detailed structural data for PS, SPP and other I-
CLiPs do not yet exist, it is clear that some portion of cel-
lular SPP and PS are present as dimers [32,33,35,36]. SPP
is apparently a simpler aspartyl I-CLiP than y-secretase in
that: SPP can be expressed in active forms without addi-
tional co-factors in heterologous systems, and, unlike PS,
SPP does not appear to undergo or require endoproteoly-
sis for activity [51]. Thus, SPP may be expected to be more
easily characterized at a molecular and structural level
than y-secretase. Structural information and studies will
inevitably provide us with greater insight into this biolog-
ically important family of proteins and aid in developing
compounds to target their activities.

Materials and methods

DNA constructs and cell culture

Epitope tagged SPP constructs used in the FLIM studies
were described previously [30]. Cyan fluorescent protein
and yellow fluorescent protein SPP fusion constructs were
generated by PCR based cloning techniques using four
vectors. pCFP-N1 and pYFP-N1 fuses the fluorescent pro-

Table 2: FLIM assay detects SPP dimer formation of epitope tagged SPP constructs.

Donor (Alexa 488 labeled) Acceptor (Cy3 labeled)

Alexa 488 Lifetime (mean = st.err, psec)

P value (Compared to Alexa donor only)

SPP<7V5* (n = 18) None 2504 + 84
SPP-;V5* (n = 18) SPPtFLAG** 1978 + 66
SPP-1V5* (n = 5) Anti-goat IgG 1328 + 58

<0.001
<0.001

*Goat Anti-V5
**Mouse Anti-FLAG

SPP dimer formation between all combinations of epitope tagged SPP constructs was demonstrated by significant shortening of donor lifetime. HEK
293 cells stably overexpressing SPP~;V5 and SPP\;FLAG. Alexa 488 labeled SPP~;V5 donor fluorophore lifetime was significantly shortened in the
presence of either Cy3 labeled SPP\FLAG or Cy3 labeled anti-goat IgG (positive control). ANOVA was performed using a Dunnet's post-hoc t-

test.
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tein to the COOH-terminus and pCFP-C1 and pYFP-C1
fuses the fluorescent protein to the NH2-terminus of SPP.
All clones were verified by sequencing. SPP reporter assay
clones were described previously [22]. Human Embryonic
Kidney (HEK) 293T cells stably overexpressing COOH-
terminal V5 tagged SPP (SPP.;V5) and NH2-terminal
FLAG tagged SPP (SPP\;FLAG) constructs [27] were
grown in Opti-MEM® media (Gibco) containing 10% FBS
in an incubator at 37°C supplemented with 5% CO,.

SPP reporter assay

The luciferase reporter assays were performed as described
previously [22]. In short, HEK 293T cells were grown to
70% confluentcy and transiently transfected using 100 pl
serum free Opti MEM® (Gibco), 8 ul of fugene, 0.01 pg of
PRL-SV40 Renilla expression plasmid (Promega), 0.25 pg
of pGL3 5xATF6 reporter plasmid, 0.25 pug of pAG3 SPP,;,
plasmid and 0.5 pg of the SPP construct expression plas-
mid or control plasmid to total 1 pg of DNA in each well
of a 12 well plate. Cells were incubated with the transfec-
tion reagent for 6-12 hours, after which the serum defi-
cient media was replaced with Dulbecco's modified
Eagle's supplemented with 8% normal calf serum (Cam-
brex), 2% fetal bovine serum (Hyclone) and incubated for
an additional 8-24 hours. Firefly and Renilla luciferase
activities were measured using the Dual-Luciferase® kit
(Promega) and a Veritas microplate Luminometer (Turner
Biosystems) with Veritas 2.0.40 software package. Trans-
fections were performed in triplicate. Results were nor-
malized to the Renilla luciferase activity control.

Transient transfections

Chinese hamster ovary (CHO) cells were split into 35 mm
dishes and co-transfected with CFP- and YFP-SPP fusion
constructs using Superfect Transfection Reagent (Qiagen,
Valencia, CA) according to the manufacturer's instruc-
tions. 24 hours post-transfection media was exchanged
with Hank's Balanced Salt Solution (Gibco) immediately
before live cell FLIM imaging.

Immunocytochemistry

HEK cells stably overexpressing SPP~;V5 and SPPFLAG-
constructs were split into four-well chamber slides 24
hours prior to immunocytochemistry and allowed to
grow to confluentcy. Once confluent, the cells were fixed
with 4% paraformaldehyde for 10 minutes and permeabi-
lized in 0.1% Triton X-100 in 1.5% NDS for one hour. Pri-
mary antibodies goat anti-V5 (1:300) (Abcam,
Cambridge, MA) and mouse anti-FLAG (1:600) (Sigma-
Aldrich, St. Louis, MO) were applied for one hour at room
temperature, followed by three washes in 1x TBS. The pri-
mary antibodies were labeled with secondary antibodies
conjugated to either Alexa 488 (Invitrogen, Gaithersburg,
MD) or Cy3 (Jackson Immunoresearch, West Grove, PA)
for one hour at room temperature, followed by three
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washes in 1x TBS. Prior to FLIM analysis, slides were cov-
erslipped using GVA Mounting Solution (Zymed, South
San Francisco, CA).

FLIM assay

FLIM has been described as a novel FRET-based technique
that allows for the analysis of proximity between epitopes
of one or two different molecules [40,42,52-54]. The tech-
nique is based on the observation that the fluorescence
lifetime of a donor fluorophore (Alexa 488 or CFP) short-
ens in the presence of a acceptor fluorophore (Cy3 or YFP)
in close proximity (<10 nm). The decrease in lifetime is
proportional to the distance between the fluorophores at
R,

In these experiments, negative controls consist of cells
transfected or immunostained with the donor fluoro-
phore only. Whereas in positive controls (in the immu-
nostained cells only), the cells are stained with the donor
fluorophore, which is then labeled with a secondary fluor-
ophore against the species in which the donor fluoro-
phore is raised [40]. In the experimental conditions, the
two epitopes of interest are labeled with donor and accep-
tor fluorophore, respectively.

A Radiance 2000 microscope (Bio-Rad, Hercules, CA)
using a mode-locked femtosecond-pulsed Ti:Sapphire
Laser (Mai Tai; Sprecta-Physics, Mountain View, CA) at
800 nm was used for multiphoton fluorescence excita-
tion. Fluorescence lifetimes were recorded employing a
high-speed photomultiplier tube (MCP R3809; Hama-
matsu, Hamamatsu City, Japan) and a fast-time correlated
single-photon counting acquisition board (SPC 830;
Becker & Hickl, Berlin, Germany).

To determine the fraction of fluorophores within each
pixel that interacts with an acceptor, donor fluorophore
lifetimes were determined by fitting the FLIM data to sin-
gle (negative control) or bi (positive control, experimental
conditions) exponential decay curves, respectively. The
display of lifetimes on a pseudocolor scale was made pos-
sible by creating a 128 x 128 pixel matrix for both single-
and bi-exponential curve fit data for each pixel (SPCImage
Becker & Hickl, Berlin, Germany).

Data analysis

Data were analyzed using Sigma Stat 3.1 from Systat Soft-
ware Inc. For comparison of multiple experimental values
relative to controls an ANOVA was performed using a
Dunnet's post hoc t-test. Variance is reported as the stand-
ard error of the mean for the SPP reporter assay and as
standard deviation for the FLIM assay.
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Abbreviations

FLIM, fluorescence lifetime imaging microscopy; SPP, sig-
nal peptide peptidase; CTF, COOH-terminal fragment;
FRET, fluorescence resonance energy transfer; YFP, yellow
fluorescent protein; CFP, cyan fluorescent protein; I-CLiP,
Intra-membrane cleaving protease; PS, presenilin;
SPP V5, COOH-terminal V5 tagged SPP; SPP.FLAG,
NH2-terminal FLAG tagged SPP; HEK, Human Embryonic
Kidney; CHO, Chinese hamster ovary.
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